The transcription factor C/EBPalpha is crucial for the differentiation of granulocytes. Conditional expression of C/EBPalpha triggers neutrophilic differentiation, and C/EBPalpha can block 12-O-tetradecanoylphorbol-13-acetate-induced monocytic differentiation of bipotential myeloid cells. In C/EBPalpha knockout mice, no mature granulocytes are present. A dramatic increase of c-Jun mRNA in C/EBPalpha knockout mouse fetal liver was observed. c-Jun, a component of the AP-1 transcription factor complex and a coactivator of the transcription factor PU.1, is important for monocytic differentiation. Here we report that C/EBPalpha downregulates c-Jun expression to drive granulocytic differentiation. An ectopic increase of C/EBPalpha expression decreases the c-Jun mRNA level, and the human c-Jun promoter activity is downregulated eightfold in the presence of C/EBPalpha. C/EBPalpha and c-Jun interact through their leucine zipper domains, and this interaction prevents c-Jun from binding to DNA. This results in downregulation of c-Jun's capacity to autoregulate its own promoter through the proximal AP-1 site. Overexpression of c-Jun prevents C/EBPalpha-induced granulocytic differentiation. Thus, we propose a model in which C/EBPalpha needs to downregulate c-Jun expression and transactivation capacity for promoting granulocytic differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC139872PMC
http://dx.doi.org/10.1128/MCB.22.24.8681-8694.2002DOI Listing

Publication Analysis

Top Keywords

transcription factor
16
c-jun expression
12
granulocytic differentiation
12
c/ebpalpha
11
c-jun
9
factor c/ebpalpha
8
monocytic differentiation
8
c/ebpalpha knockout
8
c-jun mrna
8
differentiation
7

Similar Publications

WNT4 promotes the symmetric fission of crypt in radiation-induced intestinal epithelial regeneration.

Cell Mol Biol Lett

December 2024

Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.

Background: Radiotherapy for pelvic malignant tumors inevitably causes intestinal tissue damage. The regeneration of intestinal epithelium after radiation injury relies mainly on crypt fission. However, little is known about the regulatory mechanisms of crypt fission events.

View Article and Find Full Text PDF

Multi-locus genome wide association study uncovers genetics of fresh seed dormancy in groundnut.

BMC Plant Biol

December 2024

Center of Excellence in Genomics & Systems Biology (CEGSB) and Centre for Pre-breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.

Pre-harvest sprouting (PHS) in groundnut leads to substantial yield losses and reduced seed quality, resulting in reduced market value of groundnuts. Breeding cultivars with 14-21 days of fresh seed dormancy (FSD) holds promise for precisely mitigating the yield and quality deterioration. In view of this, six multi-locus genome-wide association study (ML-GWAS) models alongside a single-locus GWAS (SL-GWAS) model were employed on a groundnut mini-core collection using multi season phenotyping and 58 K "Axiom_Arachis" array genotyping data.

View Article and Find Full Text PDF

GsMYB10 encoding a MYB-CC transcription factor enhances the tolerance to acidic aluminum stress in soybean.

BMC Plant Biol

December 2024

Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China.

Background: MYB transcription factors (TFs) play crucial roles in the response to diverse abiotic and biotic stress factors in plants. In this study, the GsMYB10 gene encoding a MYB-CC transcription factor was cloned from wild soybean BW69 line. However, there is less report on the aluminum (Al)-tolerant gene in this subfamily.

View Article and Find Full Text PDF

Retinoic acid drives surface epithelium fate determination through the TCF7-MSX2 axis.

Cell Mol Life Sci

December 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.

Understanding how embryonic progenitors decode extrinsic signals and transform into lineage-specific regulatory networks to drive cell fate specification is a fundamental, yet challenging question. Here, we develop a new model of surface epithelium (SE) differentiation induced by human embryonic stem cells (hESCs) using retinoic acid (RA), and identify BMP4 as an essential downstream signal in this process. We show that the retinoid X receptors, RXRA and RXRB, orchestrate SE commitment by shaping lineage-specific epigenetic and transcriptomic landscapes.

View Article and Find Full Text PDF

Gram-negative bacteria-driven increase of cytosolic phospholipase A2 leads to activation of Kupffer cells.

Cell Mol Life Sci

December 2024

Department of Internal Medicine and Gastroenterology, Internistisches Klinikum München Süd, Am Isarkanal 36, Munich, Germany.

Bacterial infections are prevalent and the major cause of morbidity and mortality in cirrhosis. Activation of human Kupffer cells (HKCs) from livers is essential for human innate immunity. Cytosolic phospholipase A2 (cPLA2) plays a crucial role in the control and balance of innate immune and inflammatory reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!