Syntaxin 1A binds to and inhibits epithelial cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels and synaptic Ca(2+) channels in addition to participating in SNARE complex assembly and membrane fusion. We exploited the isoform-specific nature of the interaction between syntaxin 1A and CFTR to identify residues in the H3 domain of this SNARE (SNARE motif) that influence CFTR binding and regulation. Mutating isoform-specific residues that map to the surface of syntaxin 1A in the SNARE complex led to the identification of two sets of hydrophilic residues that are important for binding to and regulating CFTR channels or for binding to the syntaxin regulatory protein Munc-18a. None of these mutations affected syntaxin 1A binding to other SNAREs or the assembly and stability of SNARE complexes in vitro. Conversely, the syntaxin 1A-CFTR interaction was unaffected by mutating hydrophobic residues in the H3 domain that influence SNARE complex stability and Ca(2+) channel regulation. Thus, CFTR channel regulation by syntaxin 1A involves hydrophilic interactions that are mechanistically distinct from the hydrophobic interactions that mediate SNARE complex formation and Ca(2+) channel regulation by this t-SNARE.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M211790200DOI Listing

Publication Analysis

Top Keywords

snare complex
16
channel regulation
12
interaction syntaxin
8
cystic fibrosis
8
fibrosis transmembrane
8
transmembrane conductance
8
conductance regulator
8
cl- channels
8
mechanistically distinct
8
syntaxin
8

Similar Publications

Objectives: Alzheimer's disease (AD) is a complex neurodegenerative disorder that primarily affects elderly individuals. This study aimed to elucidate the intricate mechanisms underlying AD in elderly patients compared with healthy aged individuals using high-throughput RNA sequencing (RNA-seq) data and next-generation knowledge discovery methods (NGKD), with a focus on identifying potential therapeutic agents.

Methods: High-throughput RNA-seq data were obtained from the Gene Expression Omnibus (GEO) database (accession number: GSE104704).

View Article and Find Full Text PDF

High concentrations of neutrophil degranulation products in the plasma and thrombi are poor prognostic indicators in patients with acute ischemic stroke (AIS). This study aimed to identify candidate effectors capable of mediating neutrophil degranulation post-AIS, and to reveal their underlying epigenetic mechanisms. Microarrays and ChIP-seq were applied to analyze the neutrophils of patients with AIS.

View Article and Find Full Text PDF

The use of the snare catheter (SC) technique has been described in the field of interventional cardiology, in particular in the retrieval of a lost device, for example, a dislodged coronary stent, broken coronary wire, and so forth. In the transcatheter aortic valve replacement (TAVR) procedure, some cases have been observed where the anatomy is challenging or there are scenarios where some complications occur during the procedure, which make it necessary to use some tools to achieve the success of the procedure. The SC has shown are very useful either to achieve the ascent of the valve to the annular plane in complex anatomies or as a rescue measure in the event of complications that may arise after valve implantation.

View Article and Find Full Text PDF

Tail Anchored protein insertion mediated by CAML and TRC40 links to neuromuscular function in mice.

PLoS Genet

January 2025

Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.

Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.

View Article and Find Full Text PDF

One of the major issues encountered in patients undergoing evaluation for Transcatheter mitral valve replacement (TMVR) is the risk of Left ventricular outflow tract (LVOT) obstruction. LVOT obstruction is a catastrophic complication of TMVR, the result of displacement of the anterior mitral valve leaflet (AML) toward the interventricular septum. Several strategies to mitigate the risk of LVOT obstruction have been described and include percutaneous laceration of the anterior mitral leaflet (LAMPOON), alcohol septal ablation, trans-atrial leaflet modification (SITRAL) and Balloon Assisted Translocation of Mitral Anterior leaflet to prevent LVOT obstruction (BATMAN).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!