GH was identified in the sea lamprey, an extant representative of a group of the most ancient vertebrates, the Agnatha. A putative GH-cDNA was cloned from the pituitary by RT-PCR. The entire coding region comprised an open-reading frame of 203 amino acids (aa). The mature protein was also isolated from pituitaries, and fractionated by gel filtration and reverse-phase HPLC. A putative GH was monitored by Western blotting with a rabbit antiserum against a synthetic peptide corresponding to pre-GH sequence (aa 29-45). Sequence analysis of the purified protein demonstrated that the prehormone consists of a signal peptide of 22 aa and the mature protein of 181 aa, which shows 25% sequence identity with sturgeon GH. The site of production was identified through immunohistochemistry to be cells of the dorsal half of the proximal pars distalis of the pituitary. Following cDNA cloning of lamprey IGF cDNA, it was shown using RT-PCR that lamprey GH stimulates IGF expression in lamprey liver. This is the first study in which a member of the GH/prolactin/somatolactin family has been identified in an agnathan. In addition, GH appears to be the only member of this hormone family in the sea lamprey. Evidence suggests that GH is the ancestral hormone in the molecular evolution of the GH family and that the endocrine mechanism for growth stimulation was established at an early stage of vertebrate evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2002-220810DOI Listing

Publication Analysis

Top Keywords

sea lamprey
12
lamprey extant
8
extant representative
8
representative group
8
group ancient
8
ancient vertebrates
8
mature protein
8
lamprey
6
identification growth
4
growth hormone
4

Similar Publications

Lampreys are early jawless vertebrates that are the key to understanding the evolution of vertebrates. However, the lack of cytomic studies on multiple lamprey organs has hindered progress in this field. Therefore, the present study constructed a comprehensive cell atlas comprising 604,460 cells/nuclei and 70 cell types from 14 lamprey tissue samples.

View Article and Find Full Text PDF

Assessment of sea lamprey texture from the Guadiana and Mondego River basins. Lamprey has served as food for centuries, and nowadays it is highly appreciated, mainly in southern European countries. Therefore, the quality requirements of the lamprey are closely scrutinized by consumers.

View Article and Find Full Text PDF

Ancient emergence of neuronal heterogeneity in the enteric nervous system of jawless vertebrates.

Dev Biol

January 2025

Division of Biology and Biological Engineering, California Institute of Technology, 91125, Pasadena, CA, USA. Electronic address:

While the enteric nervous system (ENS) of jawed vertebrates is largely derived from the vagal neural crest, lamprey are jawless vertebrates that lack the vagal neural crest, yet possess enteric neurons derived from late-migrating Schwann cell precursors. To illuminate homologies between the ENS of jawed and jawless vertebrates, here we examine the diversity and distribution of neuronal subtypes within the intestine of the sea lamprey during late embryonic and ammocete stages. In addition to previously described 5-HT-immunoreactive serotonergic neurons, we identified NOS and VIP neurons, consistent with motor neuron identity.

View Article and Find Full Text PDF

The lamprey, a primitive jawless vertebrate whose ancestors diverged from all other vertebrates over 500 million years ago, offers a unique window into the ancient formation of the retina. Using single-cell RNA-sequencing, we characterize retinal cell types in the lamprey and compare them to those in mouse, chicken, and zebrafish. We find six cell classes and 74 distinct cell types, many shared with other vertebrate species.

View Article and Find Full Text PDF

Integrated Pest Management (IPM) provides a powerful framework for addressing threats to human well-being caused by nuisance species including invasives. We examined the hypothesis that adaptive management could erode barriers to IPM implementation by developing a decision-analytic adaptive management framework for invasive sea lamprey (Petromyzon marinus) IPM in the Laurentian Great Lakes of North America. The framework addressed objectives associated with coordinating multiple sea lamprey control actions at the regional scale and objectives associated with internal validity of control actions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!