It is now well known that the diffusion coefficient (D) measured in a laboratory in low earth orbit (LEO) is less than the corresponding value measured in a terrestrial laboratory. However, all LEO laboratories are subject to transient accelerations (g-jitter) superimposed on the steady reduced gravity environment of the space platform. In measurements of the diffusion coefficients for dilute binary alloys of Pb-(Ag, Au,Sb), Sb-(Ga,In), Bi-(Ag,Au,Sb), Sn-(Au,Sb), Al-(Fe, Ni,Si), and In-Sb in which g-jitter was suppressed, it was found that D proportional to T (temperature) if g-jitter was suppressed, rather than D proportional to T(2) as observed by earlier workers with g-jitter present. Furthermore, when a forced g-jitter was applied to a diffusion couple, the value measured for D increased. The significance of these results is reviewed in the light of recent work in which ab initio molecular dynamics simulations predicted a D proportional to T relationship.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1749-6632.2002.tb05896.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!