Cat2 L-arginine transporter-deficient fibroblasts can sustain nitric oxide production.

Nitric Oxide

San Diego Cancer Center, University of California, 9500 Gilman Drive, La Jolla, CA 92093-0064 USA.

Published: December 2002

High-output nitric oxide (NO) production by nitric oxide synthase 2 (NOS2) contributes to normal cellular processes and pathophysiological conditions. The transport of L-arginine, the substrate for NOS2, is required for sustained NO production by NOS2. L-Arginine can be transported by several kinetically defined transport systems, although the majority of arginine uptake is mediated by transport system y(+), encoded by the Cat1-3 gene family. Using macrophages from Cat2-deficient mice, we previously determined that arginine uptake via CAT2 is absolutely required for sustained NO production. Because NO production by fibroblasts is important in wound healing, we sought to determine whether CAT2 is required for NO production in cytokine-stimulated Cat2-deficient and wild-type embryonic fibroblasts. Although macrophages and fibroblasts both required extracellular L-arginine for NO production, NO synthesis by activated Cat2(-/-) fibroblasts was reduced only 19%, whereas Cat2(-/-) macrophages were virtually unable to produce NO. As expected, activated Cat2(-/-) fibroblasts had reduced system y(+)-mediated arginine uptake. However, their reduced NO output was not the result of a significant difference in intracellular L-arginine levels following cytokine stimulation. Uptake experiments revealed that the L-arginine transport system y(+)L was the major cationic amino acid carrier in fibroblasts of both genotypes. We conclude that NO production in embryonic fibroblasts is only partially dependent on CAT2 and that other compensating transporters provide arginine for NOS2-mediated NO synthesis. The data demonstrate that fibroblasts and macrophages have differential dependence on CAT2-mediated L-arginine transport for NO synthesis. The important physiological implication of this finding is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1089-8603(02)00116-7DOI Listing

Publication Analysis

Top Keywords

nitric oxide
12
arginine uptake
12
fibroblasts
9
production
8
oxide production
8
required sustained
8
sustained production
8
transport system
8
embryonic fibroblasts
8
fibroblasts macrophages
8

Similar Publications

Receptors for the vasoactive adipokine apelin, termed APJ receptors, are G-protein-coupled receptors and are widely expressed throughout the cardiovascular system. APJ receptors can also signal via G-protein-independent pathways, including G-protein-coupled-receptor kinase 2 (GRK2), which inhibits nitric oxide synthase (eNOS) activity and nitric oxide (NO) production in endothelial cells. Apelin causes endothelium-dependent, NO-mediated relaxation of coronary arteries from normotensive animals, but the effects of activating APJ receptor signaling pathways in hypertensive coronary arteries are largely unknown.

View Article and Find Full Text PDF

Background And Aim: In the context of gastrointestinal diseases, the role of monoacylglycerol lipase (MAGL) is significant. Therefore, the objective of this study was to examine the protective effects of MAGL inhibition using JZL184 in rat models of severe acute pancreatitis (SAP) and to explore its mechanism.

Methods: In this study, a rat model of SAP was established, and the rats were divided into three groups for treatment: the Control group (CON), the SAP group (SAP), and the SAP group treated with JZL184 (JZL184).

View Article and Find Full Text PDF

In this study, Chinese yam polysaccharides (CYPs) were fermented using M616, and changes in the chemical composition, structure, and anti-inflammatory activity of CYPs before and after fermentation were investigated. The carbohydrate content of M616-fermented CYP (CYP-LP) increased from 71.03% ± 2.

View Article and Find Full Text PDF

Management of traumatic brain injury and acute respiratory distress syndrome-What evidence exists? A scoping review.

J Intensive Care Soc

January 2025

Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC, USA.

Introduction: Up to 20% of patients with traumatic brain injury (TBI) develop acute respiratory distress syndrome (ARDS), which is associated with increased odds of mortality. Guideline-based treatment for ARDS includes "lung protective" ventilation strategies, some of which are in opposition to "brain protective" strategies used for ventilation with patients with TBI. We conducted a scoping review of ventilation management strategies with clinical outcomes among patients with TBI and ARDS.

View Article and Find Full Text PDF

Recent advances in the role of gasotransmitters in necroptosis.

Apoptosis

January 2025

Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.

Necroptosis is a finely regulated programmed cell death process involving complex molecular mechanisms and signal transduction networks. Among them, receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein are the key molecules regulating this process. In recent years, gasotransmitters such as nitric oxide, carbon monoxide and hydrogen sulfide have been suggested to play a regulatory role in necroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!