Wnt signaling functions repeatedly during embryonic development to induce different but specific responses. What molecular mechanisms ensure that Wnt signaling triggers the correct tissue-specific response in different tissues? Early Xenopus development is an ideal model for addressing this fundamental question, since there is a dramatic change in the response to Wnt signaling at the onset of zygotic gene transcription: Wnt signaling components encoded by maternal mRNA establish the dorsal embryonic axis; zygotically expressed Xwnt-8 causes almost the opposite, by promoting ventral and lateral and restricting dorsal mesodermal development. Although Wnt signaling can function through different signal transduction cascades, the same beta-catenin-dependent, canonical Wnt signal transduction pathway mediates Wnt signaling at both stages of Xenopus development. Here we show that, while the function of the transcription factor XTcf-3 is required for early Wnt signaling to establish the dorsal embryonic axis, closely related XLef-1 is required for Wnt signaling to pattern the mesoderm after the onset of zygotic transcription. Our results show for the first time that different transcription factors of the Lef/Tcf family function in different tissues to bring about tissue-specific responses downstream of canonical Wnt signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0960-9822(02)01280-0DOI Listing

Publication Analysis

Top Keywords

wnt signaling
40
xenopus development
12
wnt
11
signaling
10
transcription factors
8
development wnt
8
onset zygotic
8
establish dorsal
8
dorsal embryonic
8
embryonic axis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!