A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Alteration of dorsal root ganglion P2X3 receptor expression and function following spinal nerve ligation in the rat. | LitMetric

Alteration of dorsal root ganglion P2X3 receptor expression and function following spinal nerve ligation in the rat.

Exp Brain Res

Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064-6123, USA.

Published: December 2002

One subtype of ATP-gated ion channel, the P2X(3) receptor, is expressed primarily on peripheral sensory neurons. While it is known that P2X(3) receptors can participate in certain forms of nociceptive signaling, their involvement in neuropathic pain transmission is not known. We have examined the expression and function of P2X(3) receptors in a rat spinal nerve ligation model of neuropathic pain. Fourteen days following L5/L6 spinal nerve ligation, the corresponding dorsal root ganglia (DRG) were removed from animals exhibiting mechanical allodynia, and these were studied using immunohistochemical and electrophysiological techniques. Using a polyclonal antibody to label the P2X(3) receptor, a significant reduction in neuronal P2X(3) immunoreactivity was observed in the ipsilateral (injured) L5 and L6 DRG following nerve ligation. In vitro electrophysiological analysis of acutely isolated DRG neurons revealed a similar decrease in functional P2X(3)-containing receptors. In small diameter (22-25 micro m) neurons, a significant reduction in the number of cells exhibiting a response to alpha,beta-meATP was observed. However, a subset of small diameter neurons retained P2X(3) responses of equal amplitude to those recorded from naive and sham control DRG neurons. Interestingly, P2X(3) immunoreactivity and P2X(3)-like responses were also detected in a subset of larger diameter (50 micro m) neurons and the number and amplitude of these responses were unchanged after spinal nerve ligation. These results suggest that, while there appears to be a decrease in fast desensitizing P2X(3) receptors following L5/L6 nerve ligation injury, certain subsets of small and large DRG neurons maintain normal P2X(3) receptor expression and function. These remaining receptors may provide a P2X(3) receptor-mediated component to neuropathic pain.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-002-1263-xDOI Listing

Publication Analysis

Top Keywords

nerve ligation
24
p2x3 receptor
16
spinal nerve
16
expression function
12
p2x3 receptors
12
neuropathic pain
12
drg neurons
12
p2x3
11
dorsal root
8
receptor expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!