This study investigates the functional consequences of two mutations, A194E and A216P, in the splicing factor gene PRPF31 linked to autosomal dominant retinitis pigmentosa (RP11). Using a yeast complementation assay, we demonstrate that introduction of the human A216P mutation into the yeast orthologue PRP31p results in only partial rescue of growth at the restrictive temperature, indicating that splicing function is not fully restored. An in vivo assay of splicing function in human cells using a bovine rod opsin splicing template did not detect any defect in splicing efficiency or accuracy attributable to either mutation, suggesting that neither has a dominant negative effect on splicing. However, western analysis and immunofluorescence microscopy of mammalian cells transfected with PRPF31 revealed that both mutations substantially hinder translocation of the protein into the nucleus. The overall effect may thus be an insufficiency in splicing function, which is revealed only under conditions of elevated splicing demand. With the need to replenish disc proteins on a daily basis, such conditions will exist in rod photoreceptors and this may underlie the disease pathology.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/11.25.3209DOI Listing

Publication Analysis

Top Keywords

splicing function
12
splicing
9
retinitis pigmentosa
8
pigmentosa rp11
8
splicing factor
8
factor gene
8
gene prpf31
8
disease mechanism
4
mechanism retinitis
4
rp11 caused
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!