The present study was designed to investigate the effect of peripheral electrical stimulation (PES), with high (100 Hz) or low (2 Hz) frequencies, on the expression of cocaine-induced conditioned place preference (CPP). Rats were trained with cocaine (0.1-10 mg/kg, i.p.) under a biased paradigm in a three-compartment chamber for the development of a CPP. One day following the last conditioning, the total time spent in each compartment was recorded after the deliverance of PES. Naloxone (1, 5, and 10 mg/kg, i.p.) was applied to investigate whether endogenous opioid receptor pathways play any role in the effect of PES. It was found that (1). 1 mg/kg and higher doses of cocaine, but not 0.5 mg/kg, produced significant place preference, (2). cocaine-induced CPP, once developed, maintained for more than 13 days in a cocaine-free state, (3). PES of 100 Hz, but not 2 Hz, significantly attenuated the expression of cocaine-induced CPP (P<0.01), (4). PES per se did not influence the natural place preference in rats, and (5). the inhibition of cocaine CPP induced by 100 Hz PES could be reversed by naloxone pre-treatment at 10 mg/kg, but not at lower doses. These results suggest that PES could inhibits cocaine-induced CPP in a frequency-dependent manner. This effect is probably mediated by an endogenous kappa-opioid mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-8993(02)03614-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!