As in Prader-Willi syndrome (PWS) infants, mouse models of PWS display failure-to-thrive during the neonatal period. In rodents, the hypothalamic neuropeptide, Neuropeptide Y (NPY) and Agouti-related peptide (AgrP) stimulate while alpha-melanocyte stimulating hormone (alpha-MSH) inhibits appetite. We hypothesized that altered expression of these neuropeptides in the hypothalamus may underlie the failure-to-thrive in PWS neonatal mice. To test this hypothesis we evaluated mRNA expression of Npy, Agrp, and Pomc by in situ hybridization in the hypothalamic arcuate nucleus (ARC) of 3-day-old female and male PWS neonates. The results showed that Agrp mRNA expression was decreased relative to wild-type (WT) controls in neonates of both sexes, while mRNA expression of Pomc was upregulated in PWS neonates. Since AgrP and the Pomc-derived peptide, alpha-MSH, are functional antagonists at melanocortin 4 receptors in the hypothalamic regulation of appetitive behavior, these results show that robust anorexigenic melanocortin signaling, may contribute to the failure-to-thrive in PWS neonatal mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-8993(02)03583-7DOI Listing

Publication Analysis

Top Keywords

mrna expression
12
anorexigenic melanocortin
8
melanocortin signaling
8
prader-willi syndrome
8
failure-to-thrive pws
8
pws neonatal
8
neonatal mice
8
pws neonates
8
neonates agrp
8
pws
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!