Pancreatic rat islets are encapsulated by a siliceous layer deposited on the surface of single islets upon reaction with gaseous siliceous precursors. The process preserves original islet dimensions and does not suppress viability or function. The encapsulated material is homogeneously distributed on the islet surface, and layer thickness can be controlled in the 0.1-2.0 microm interval. Dynamic perfusion experiments with glucose stimulation were carried out in both encapsulated and non-encapsulated islets. Results were treated according to a kinetic model presented here for the analysis of perfusion data; the model tested by literature data, was used to substantiate the diffusion features of the siliceous layer, which does not affect mass transfer of insulin but which modifies the texture of the islet surface tissue. The clinical potential of silica encapsulation was demonstrated by in vivo experiments using encapsulated islets transplanted into diabetic rats. Transplantation was carried out in both inbred and outbred rats and indicated prolonged restoration of normal glycaemia levels and protection from immunological attack.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0168-1656(02)00248-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!