Hyperfine structure of the electron spin resonance of phosphorus-doped Si nanocrystals.

Phys Rev Lett

Department of Electrical and Electronics Engineering, Faculty of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan.

Published: November 2002

Electronic states of P donors in Si nanocrystals (nc-Si) embedded in insulating glass matrices have been studied by electron spin resonance. Doping of P donors into nc-Si was demonstrated by the observation of optical absorption in the infrared region due to intraconduction band transitions. P hyperfine structure (hfs) was successfully observed at low temperatures. The observed splitting of the hfs was found to be much larger than that of the bulk Si:P and depended strongly on the size of nc-Si. The observed strong size dependence indicates that the enhancement of the hyperfine splitting is caused by the quantum confinement of P donors in nc-Si.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.89.206805DOI Listing

Publication Analysis

Top Keywords

hyperfine structure
8
electron spin
8
spin resonance
8
donors nc-si
8
structure electron
4
resonance phosphorus-doped
4
phosphorus-doped nanocrystals
4
nanocrystals electronic
4
electronic states
4
states donors
4

Similar Publications

The development of smart materials capable of separating dihydrogen isotopologues has risen recently. Among potential candidates, the flexible MIL-53 (Al) has been gaining attention due to its structural flexibility providing the so-called ''breathing mechanism'' that can be useful to separate hydrogen isotopologues selectively. In the present work, an in situ continuous wave electron paramagnetic resonance investigation has been proven as a sensitive technique to follow the isotopologue-selective adsorption-desorption of dihydrogen species on the paramagnetic metal-doped MIL-53 (Al0.

View Article and Find Full Text PDF

Rotational spectroscopy is an excellent tool for structure determination, which can provide additional insights into local electronic structure by investigating the hyperfine pattern due to nuclear quadrupole coupling. Jet-cooled molecules are good experimental benchmark targets for electronic structure calculations, as they are free of environmental effects. We report the rotational spectra of 2-chlorobenzaldehyde, 3-chlorobenzaldehyde, and 4-chlorobenzaldehyde, including a complete experimental description of the nuclear quadrupole coupling constants, which were previously not experimentally determined.

View Article and Find Full Text PDF

We introduce a computational methodology for evaluating and analyzing spin-vibration couplings in molecular systems, enabling insights into the interplay between electronic spins and molecular vibrations. By mapping ab initio electronic structure calculations onto molecular spin Hamiltonians, our approach captures those vibrational interactions potentially driving spin relaxation process. Spin-vibration couplings, derived from Holstein and Peierls terms, highlight the pivotal role of vibrational mode symmetry in spin decoherence and efficient energy dissipation.

View Article and Find Full Text PDF

The delocalization length of charge carriers in organic semiconductors influences their mobility and is an important factor in the design of functional materials. Here, we have studied the radical anions of a series of linear and cyclic butadiyne-linked porphyrin oligomers using CW-EPR, H Mims ENDOR and NIR/MIR spectroelectrochemistry together with DFT calculations and multiscale molecular modeling. Low-temperature hyperfine EPR spectroscopy and optical data show that polarons are delocalized nonuniformly over about four porphyrins with most of the spin density on just two units even in the cyclic structures, in which all porphyrin sites are identical.

View Article and Find Full Text PDF

This paper describes muon spin spectroscopy studies of 12-phosphatetraphene stabilized by a peri-trifluoromethyl group and a meso-aryl substituent. Even though the prepared solution in tetrahydrofuran (THF) was quite dilute (0.060 M) for transverse-field muon spin rotation (TF-µSR) measurements, the π-extended heavier congener of tetraphene presented a pair of signals due to a muoniated radical from which the muon hyperfine coupling constant (hfc) was determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!