In order to identify the neutralizing epitope of the porcine epidemic diarrhea virus (PEDV), the spike protein region that is presumed to contain the virus-neutralizing epitope was determined. This was based on the sequence information for the neutralizing epitope of the transmissible gastroenteritis virus (TGEV). A recombinant protein that corresponds to the spike region of TGEV was produced, and polyclonal antisera were generated using the recombinant protein. It was discovered that polyclonal antisera significantly inhibited plaque formation by PEDV, suggesting that this region of the spike protein contains the epitope(s) that is capable of inducing PEDV-neutralizing antibodies. In addition, the region that corresponds to the neutralizing epitope of TGEV may also be involved in neutralizing PEDV, although the two viruses are serologically quite distinct. Finally, the amino acid sequences that are deduced from the genes for the determined-neutralizing epitope were highly homologous among the PEDV strains that were isolated from different geographical areas, which suggests conservation of the antigen gene.
Download full-text PDF |
Source |
---|
Microb Pathog
January 2025
Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China. Electronic address:
Porcine epidemic diarrhoea virus (PEDV) is a porcine enteric coronavirus, outbreaks and epidemics of which have caused huge economic losses to the livestock industry. The disadvantage of existing PEDV vaccines is that the unstable efficacy and high cost limit their widespread use. Therefore, there is an urgent need to develop a recombinant transgenic vaccine candidate for PEDV.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China. Electronic address:
Rabies virus (RABV) is extremely hazardous to both humans and animals, causing up to 100 % death. Accurate and easy-to-use serological evaluation of vaccine potency following immunization is crucial for rabies control. In this study, recombinant RABV glycoprotein (rG) was designed and produced in 293FT cells.
View Article and Find Full Text PDFViruses
January 2025
College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China.
Porcine reproductive and respiratory syndrome virus (PRRSV), an important pathogen affecting the pig industry, is an RNA virus with high genetic diversity. In this study, 12,299 clinical samples were collected from northern China during 2021-2023 to investigate the molecular epidemiological characteristics and genetic evolution of PRRSV. All samples were screened using qRT-PCR and further analyzed through gene and whole-genome sequencing.
View Article and Find Full Text PDFViruses
January 2025
Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
Microvirin is a lectin molecule known to have monovalent interaction with glycoprotein gp120. A previously reported high-resolution structural analysis defines the mannobiose-binding cavity of Microvirin. Nonetheless, structure does not directly define the energetics of binding contributions of protein contact residues.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
Porcine epidemic diarrhea (PED) is caused by the PED virus, with (), comprising and , being the primary contributors to outbreaks worldwide. In Thailand, was the only virulent strain identified until the emergence of the first strain in 2014, followed by additional strains in 2015-2016, particularly those closely related to virulent strains from China. This led to increased awareness of more frequent and complex outbreaks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!