Different pH-sensitive, randomly- and terminally-alkylated N-isopropylacrylamide (NIPAM) copolymers were synthesized and used to prepare pH-responsive polymeric micelles (PM). These copolymers were modified from previously-studied copolymers by incorporating an additional hydrophilic monomer, N-vinyl-2-pyrrolidone (VP) to decrease uptake by the mononuclear phagocyte system (MPS) and improve localization in tumors. VP lowered the phase transition pH of the copolymers but did not affect the onset of micellization. The in vitro cytotoxicity of the copolymers was evaluated on EMT-6 mouse mammary tumor cells in comparison to Cremophor EL (CRM). The anticancer photosensitizer aluminum chloride phthalocyanine (AlClPc) was loaded into the PM with a standard dialysis procedure. Biodistribution and in vivo photodynamic activity were then evaluated in Balb/c mice bearing intradermal EMT-6 tumors. All NIPAM copolymers demonstrated substantially lower cell cytotoxicity than the control surfactant CRM. In vivo, similar AlClPc tumor uptake was observed for the PM and CRM formulations. However, the PM appeared to exhibit greater activity in vivo than CRM formulation at an AlClPc subtherapeutic dose. Therefore, NIPAM-based copolymers containing VP units represent promising alternatives for the formulation of poorly water-soluble phthalocyanines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/1061186021000001887 | DOI Listing |
Biomacromolecules
January 2025
Université de Pau et des Pays de l'Adour, CNRS, UMR 5254, IPREM, 2 av. P. Angot, Pau, Pau F-64053, France.
Terpene-based amphiphilic copolymers have been designed as biobased stabilizers for waterborne latex synthesized by miniemulsion or emulsion polymerization of 1,3-diene terpene monomers. The pH-responsive P(AA--My) amphiphilic copolymers were synthesized by nitroxide-mediated radical copolymerization of β-myrcene (My) and acrylic acid (AA) with reactivity ratios of = 0.24 ± 0.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Forensic Science, School for Bio Engineering and Bio Sciences, Lovely Professional University, Phagwara, Punjab, India.
The development of pH-directed nanoparticles for tumor targeting represents a significant advancement in cancer biology and therapeutic strategies. These innovative materials have the ability to interact with the unique acidic microenvironment of tumors. They enhance drug delivery, increase therapeutic efficacy, and reduce systemic toxicity.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
pH-responsive polyamidoamine (PAMAM) dendrimers are used as well-defined building blocks to design light-switchable nano-assemblies in solution. The complex interplay between the photoresponsive di-anionic azo dye Acid Yellow 38 (AY38) and the cationic PAMAM dendrimers of different generations is presented in this study. Electrostatic self-assembly involving secondary dipole-dipole interactions provides well-defined assemblies within a broad size range (10 nm-1 μm) with various shapes.
View Article and Find Full Text PDFFood Res Int
February 2025
School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, PR China. Electronic address:
Int J Biol Macromol
January 2025
Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, D-07743 Jena, Germany; Jena Center for Soft Matters (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany. Electronic address:
Nanomedicine, particularly gene delivery, holds immense potential and offers promising therapeutic options. Non-viral systems gained attention due to their binding capacity, stability and scalability. Among these, natural polysaccharides, such as pullulan, are advantageous in terms of sustainability, biocompatibility and potential degradability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!