As with other cranial nerves and many CNS neurons, primary auditory neurons degenerate as a consequence of loss of input from their target cells, the inner hair cells (IHCs). Electrical stimulation (ES) of spiral ganglion cells (SGCs) has been shown to enhance their survival. Glial cell line-derived neurotrophic factor (GDNF) has also been shown to increase survival of SGCs following IHC loss. In this study, the combined effects of the GDNF transgene delivered by adenoviral vectors (Ad-GDNF) and ES were tested on SGCs after first eliminating the IHCs. Animal groups received Ad-GDNF or ES or both. Ad-GDNF was inoculated into the cochlea of guinea pigs after deafening, to overexpress human GDNF. ES-treated animals were implanted with a cochlear implant electrode and chronically stimulated. A third group of animals received both Ad-GDNF and ES (GDNF/ES). Electrically evoked auditory brainstem responses were recorded from ES-treated animals at the start and end of the stimulation period. Animals were sacrificed 43 days after deafening and their ears prepared for evaluation of IHC survival and SGC counts. Treated ears exhibited significantly greater SGC survival than nontreated ears. The GDNF/ES combination provided significantly better preservation of SGC density than either treatment alone. Insofar as ES parameters were optimized for maximal protection (saturated effect), the further augmentation of the protection by GDNF suggests that the mechanisms of GDNF- and ES-mediated SGC protection are, at least in part, independent. We suggest that GDNF/ES combined treatment in cochlear implant recipients will improve auditory perception. These findings may have implications for the prevention and treatment of other neurodegenerative processes. .

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.10480DOI Listing

Publication Analysis

Top Keywords

glial cell
8
cell line-derived
8
line-derived neurotrophic
8
neurotrophic factor
8
electrical stimulation
8
received ad-gdnf
8
es-treated animals
8
cochlear implant
8
factor chronic
4
chronic electrical
4

Similar Publications

Background: Glia mediated neuroinflammation and degeneration of inhibitory GABAergic interneurons are some of the hall marks of pyrethroid neurotoxicity. Here we investigated the sex specific responses of inflammatory cytokines, microglia, astrocyte and parvalbumin positive inhibitory GABAergic interneurons to λ-cyhalothrin (LCT) exposures in rats.

Methods: Equal numbers of male and female rats were given oral corn oil, 2 mg/kg.

View Article and Find Full Text PDF

Background: Glial cell line-derived neurotrophic factor (GDNF) has emerged as a potential biomarker for schizophrenia (SCZ). However, GDNF levels remain unclear in affected individuals compared to healthy controls. Therefore, we aimed to calculate a pooled estimate of GDNF levels in patients with SCZ in comparison with healthy controls.

View Article and Find Full Text PDF

Oligodendrocytes in Alzheimer's disease pathophysiology.

Nat Neurosci

January 2025

Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.

Our understanding of Alzheimer's disease (AD) has transformed from a purely neuronal perspective to one that acknowledges the involvement of glial cells. Despite remarkable progress in unraveling the biology of microglia, astrocytes and vascular elements, the exploration of oligodendrocytes in AD is still in its early stages. Contrary to the traditional notion of oligodendrocytes as passive bystanders in AD pathology, emerging evidence indicates their active participation in and reaction to amyloid and tau pathology.

View Article and Find Full Text PDF

Construction of a rodent neural network-skeletal muscle assembloid that simulate the postnatal development of spinal cord motor neuronal network.

Sci Rep

January 2025

Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.

Neuromuscular diseases usually manifest as abnormalities involving motor neurons, neuromuscular junctions, and skeletal muscle (SkM) in postnatal stage. Present in vitro models of neuromuscular interactions require a long time and lack neuroglia involvement. Our study aimed to construct rodent bioengineered spinal cord neural network-skeletal muscle (NN-SkM) assembloids to elucidate the interactions between spinal cord neural stem cells (SC-NSCs) and SkM cells and their biological effects on the development and maturation of postnatal spinal cord motor neural circuits.

View Article and Find Full Text PDF

Isocitrate dehydrogenase 1/2 mutant (IDHmt) astrocytoma is considered a T cell-deprived tumor, yet little is known regarding the phenotypes underlying T cell exclusion. Using bulk, single nucleus and spatial RNA and protein profiling, we demonstrate that a distinct spatial organization underlies T cell confinement to the perivascular space (T cell cuff) in IDHmt astrocytoma. T cell cuffs are uniquely characterized by a high abundance of gemistocytic tumor cells (GTC) in the surrounding stroma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!