The transmembrane protein Dystroglycan is a central element of the dystrophin-associated glycoprotein complex, which is involved in the pathogenesis of many forms of muscular dystrophy. Dystroglycan is a receptor for multiple extracellular matrix (ECM) molecules such as Laminin, agrin and perlecan, and plays a role in linking the ECM to the actin cytoskeleton; however, how these interactions are regulated and their basic cellular functions are poorly understood. Using mosaic analysis and RNAi in the model organism Drosophila melanogaster, we show that Dystroglycan is required cell-autonomously for cellular polarity in two different cell types, the epithelial cells (apicobasal polarity) and the oocyte (anteroposterior polarity). Loss of Dystroglycan function in follicle and disc epithelia results in expansion of apical markers to the basal side of cells and overexpression results in a reduced apical localization of these same markers. In Dystroglycan germline clones early oocyte polarity markers fail to be localized to the posterior, and oocyte cortical F-actin organization is abnormal. Dystroglycan is also required non-cell-autonomously to organize the planar polarity of basal actin in follicle cells, possibly by organizing the Laminin ECM. These data suggest that the primary function of Dystroglycan in oogenesis is to organize cellular polarity; and this study sets the stage for analyzing the Dystroglycan complex by using the power of Drosophila molecular genetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.00199 | DOI Listing |
Skelet Muscle
January 2025
Department of Molecular Physiology and Biophysics, and Department of Neurology, Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
Background: Maintaining the connection between skeletal muscle fibers and the surrounding basement membrane is essential for muscle function. Dystroglycan (DG) serves as a basement membrane extracellular matrix (ECM) receptor in many cells, and is also expressed in the outward-facing membrane, or sarcolemma, of skeletal muscle fibers. DG is a transmembrane protein comprised of two subunits: alpha-DG (α-DG), which resides in the peripheral membrane, and beta-DG (β-DG), which spans the membrane to intracellular regions.
View Article and Find Full Text PDFbioRxiv
August 2024
Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
Dystroglycan is a cell adhesion molecule that localizes to synapses throughout the nervous system. While Dystroglycan is required to maintain inhibitory synapses from cerebellar molecular layer interneurons (MLIs) onto Purkinje cells (PCs) whether initial synaptogenesis during development is dependent on Dystroglycan has not been examined. We show that conditional deletion of from Purkinje cells prior to synaptogenesis results in impaired MLI:PC synapse formation and function due to reduced presynaptic inputs and abnormal postsynaptic GABA receptor clustering.
View Article and Find Full Text PDFPLoS Biol
September 2024
Cell Biology of Tissue Architecture and Physiology. Laboratory for Molecular Cell Biology (LMCB), University College London, London, United Kingdom.
Cell shape remodeling is a principal driver of epithelial tissue morphogenesis. While progress continues to be made in our understanding of the pathways that control the apical (top) geometry of epithelial cells, we know comparatively little about those that control cell basal (bottom) geometry. To examine this, we used the Drosophila ommatidium, which is the basic visual unit of the compound eye.
View Article and Find Full Text PDFG3 (Bethesda)
September 2024
Department of Genetics, Washington University School of Medicine, 4523 Clayton Avenue, St. Louis, MO 63110, USA.
Despite increasing in mass approximately 100-fold during larval life, the Drosophila CNS maintains its characteristic form. Dynamic interactions between the overlying basement membrane and underlying surface glia are known to regulate CNS structure in Drosophila, but the genes and pathways that establish and maintain CNS morphology during development remain poorly characterized. To identify genes that regulate CNS shape in Drosophila, we conducted an EMS-based, forward genetic screen of the second chromosome, uncovered 50 mutations that disrupt CNS structure, and mapped these alleles to 17 genes.
View Article and Find Full Text PDFVirol Sin
August 2024
State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; University of the Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Lassa virus (LASV) is an enveloped, negative-sense RNA virus that causes Lassa hemorrhagic fever. Successful entry of LASV requires the viral glycoprotein 1 (GP1) to undergo a receptor switch from its primary receptor alpha-dystroglycan (α-DG) to its endosomal receptor lysosome-associated membrane protein 1 (LAMP1). A conserved histidine triad in LASV GP1 has been reported to be responsible for receptor switch.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!