Helicobacter pylori, the main cause of chronic gastritis, plays a central role in the etiology of peptic ulcer disease and gastric cancer. In vitro studies have shown that H. pylori increases gastric epithelial cell turnover, thus increasing the risk for the development of neoplastic clones. The mechanisms by which H. pylori promotes perturbation of cell proliferation are not yet elucidated. To investigate whether products released by H. pylori in culture media interfere with cell cycle progression of human gastric epithelial cells, four cell lines (MKN 28, MKN 7, MKN 74, and AGS) were incubated in the presence of H. pylori broth culture filtrate. Cell cycle analysis showed that a H. pylori-released factor(s) significantly inhibited the G1- to S-phase progression of MKN 28 and MKN 7 cell lines, with a reversible, nonlethal mechanism, independent of the expression of VacA, CagA, and/or urease. The cell cycle inhibition occurred concomitantly with an increase in p27(KIP1) protein levels, a reduction in Rb protein phosphorylation on serine residues 807-811, and a significant decrease in cyclin E-associated cdk2 activity. In contrast, the cell cycle progression of MKN 74 and AGS cell lines was not affected by the H. pylori-released factor(s). In normal human fibroblasts, G1-phase cell accumulation was concomitant with the reduction in Rb protein phosphorylation; that, however, appeared to be dependent on p21(WAF1/CIP1) rather than on p27(KIP1) protein. A preliminary characterization showed that the molecular mass of the partially purified cell cycle inhibitory factor(s) was approximately 40 kDa. These results suggest that H. pylori releases a soluble factor(s) that may affect cell cycle progression of gastric epithelial cells through elevated levels of cdk inhibitor p27(KIP1). This factor(s) might act in vivo on noncolonized distant cells, the most proliferating cells of human gastric mucosa.

Download full-text PDF

Source
http://dx.doi.org/10.1006/excr.2002.5629DOI Listing

Publication Analysis

Top Keywords

cell cycle
28
cycle progression
16
cell lines
16
cell
14
human gastric
12
protein phosphorylation
12
p27kip1 protein
12
gastric epithelial
12
mkn mkn
12
helicobacter pylori
8

Similar Publications

We build and study an individual based model of the telomere length's evolution in a population across multiple generations. This model is a continuous time typed branching process, where the type of an individual includes its gamete mean telomere length and its age. We study its Malthusian's behaviour and provide numerical simulations to understand the influence of biologically relevant parameters.

View Article and Find Full Text PDF

Background: Oral squamous cell carcinoma (OSCC) ranks as the sixth most common malignancy globally. Cisplatin is the standard chemotherapy for OSCC, but resistance often reduces its efficacy, necessitating new treatments with fewer side effects. Rumex dentatus L.

View Article and Find Full Text PDF

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

A cross-tissue transcriptome-wide association study identifies new susceptibility genes for benign prostatic hyperplasia.

Sci Rep

January 2025

Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, People's Republic of China.

Benign prostatic hyperplasia (BPH) is a prevalent urinary system disorder. Despite evidence of a significant genetic component from previous studies, the specific pathogenic genes and biological mechanisms are still largely unknown. The study utilized the FinnGen R10 dataset, encompassing 177,901 individuals (36,601 cases and 141,300 controls), and the GTEx v8 EQTLs files to conduct single-tissue and cross-tissue transcriptome-wide association studies (TWAS).

View Article and Find Full Text PDF

Identification of a novel TOP2B::AFF2 fusion gene in B-cell acute lymphoblastic leukemia.

Sci Rep

January 2025

Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China.

Genetic alterations play a pivotal role in leukemic clonal transformation, significantly influencing disease pathogenesis and clinical outcomes. Here, we report a novel fusion gene and investigate its pathogenic role in acute lymphoblastic leukemia (ALL). We engineer a transposon transfection system expressing the TOP2B::AFF2 transcript and introduce it into Ba/F3 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!