The potential for muscle growth depends on myoblast proliferation, which occurs essentially during the first two thirds of the foetal period in cattle. Thereafter, myofibres acquire their contractile and metabolic properties. Proliferation is regulated by molecular growth factors and by the tissue oxidative activity. The aim of this study was the quantification by immunochemistry of basic fibroblast growth factor (bFGF) and transforming growth factor beta 1 (TGF-beta1) and also of enzyme catalase (CAT) activity in rectus abdominis muscle. Samples were collected from cattle foetuses of different growth potential at 180 and 260 days post-conception (dpc). One major conclusion from this work is that protein contents of the muscle tissue bFGF and, to a lower extent, CAT activity decreased with increasing age during the foetal life. No differences were found between the different genotypes of cattle. However, the CAT to bFGF ratio tended to be lower in fast-growing cattle and increased with foetal age. TGF-beta1 did not change with age and was localised mostly at the vascular bed. CAT was detected in smooth and rough reticulum in striated muscles at 180dpc, and additionally in mitochondria at 260dpc. In conclusion, the balance between intracellular growth factors (bFGF and TGF-beta1) and the activity of antioxidant enzyme CAT may participate in the regulation of the transition from myoblast proliferation to differentiation. Thus, increased ratio of CAT to bFGF might be a good index indicating initiation of muscle maturation in cattle foetus prior to birth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0040816602000824 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!