A new antisense peptide-peptide nucleic acid (peptide-PNA) conjugate, designed for targeting bcl-2 expression, has been radiolabeled, characterized, and evaluated for bcl-2 mRNA binding in a cell-free system. A PNA complementary to the first six codons of the bcl-2 gene was synthesized by standard solid-phase Fmoc chemistry and conjugated to a new derivative of 1,4,7,10-tetraazacyclododecane-N,N',N",N'"-tetraacetic acid (DOTA) that allows macrocyclic radiometal chelates to be incorporated into any sequence position of a peptide-PNA conjugate. The DOTA-PNA conjugate was then coupled to a membrane-permeating transduction peptide, PTD-4, designed for intracellular delivery of the radiolabeled PNA. The conjugate was characterized by HPLC and ESI-MS and labeled with (111)In and (90)Y to high specific activities (>1000 Ci/mmol) with high radiochemical purity. Northern blot analysis showed that (90)Y-PTD-4-K(DOTA)-anti-bcl-2-PNA bound specifically to as little as 50 fmol of bcl-2 mRNA, a result equivalent to that obtained with the analogous (32)P-labeled DNA antisense oligonucleotide. Thus, the mRNA targeting properties of (111)In- and (90)Y-PTD-4-K(DOTA)-anti-bcl-2-PNA demonstrate potential for diagnostic imaging and targeted radiotherapy applications in bcl-2-positive cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bc025591sDOI Listing

Publication Analysis

Top Keywords

targeting bcl-2
8
bcl-2 expression
8
mrna binding
8
peptide-pna conjugate
8
bcl-2 mrna
8
bcl-2
5
radiometal-labeled peptide-pna
4
peptide-pna conjugates
4
conjugates targeting
4
expression preparation
4

Similar Publications

Introduction: The mortality rate for liver cancer is extremely high but clinical treatments have not made much progress, so it is necessary to develop anticancer agents with lower toxicities and more effective liver-targeting drug delivery systems (LTDDSs). At present, LTDDSs mediated by the asialoglycoprotein receptor (ASGPR) show excellent effects at improving the liver-targeting and antitumor effects of drugs. However, the galactosyl ligands are typically prepared by chemical synthesis and have some shortcomings.

View Article and Find Full Text PDF

Introduction: Triple-negative breast cancer (TNBC) is the most challenging subtype of breast cancer to treat. While previous studies have demonstrated that ginsenoside Rh2 induces apoptosis in TNBC cells, the specific molecular targets and underlying mechanisms remain poorly understood. This study aims to uncover the molecular mechanisms through which ginsenoside Rh2 regulates apoptosis and proliferation in TNBC, offering new insights into its therapeutic potential.

View Article and Find Full Text PDF

Renal dysfunction due to ischemia-reperfusion injury (IRI) is a common problem after kidney transplantation. In recent years, studies on animal models have shown that exosomes derived from mesenchymal stem cells (MSC-Exo) play an important role in treating acute kidney injury (AKI) and promoting tissue repair. The microneedle patch provides a noninvasive and targeted delivery system for exosomes.

View Article and Find Full Text PDF

Bullatine A suppresses glioma cell growth by targeting SIRT6.

Heliyon

January 2025

Department of Cerebrovascular Disease, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, PR China.

Gliomas are the most common primary tumors of the nervous system, which is generally treated using adjuvant chemotherapy following surgical resection. However, patient survival time is still short, and there is currently no successful treatment for highly malignant gliomas. Bullatine A (BLA) is a diterpenoid alkaloid of the genus Aconitum which antirheumatic and anti-inflammatory pharmacological properties.

View Article and Find Full Text PDF

Ginkgolide B as a biopsychosocial treatment salvages repeated restraint stress-induced amygdalar anomalies in mice.

IBRO Neurosci Rep

June 2025

Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria.

From preclinical and clinical findings, it has been shown that the amygdala is a critical mediator of stress and primary target for stress effects in the brain. We investigated the neuroprotective effect of Ginkgolide B (GB) in repeated restraint stress-induced behavioral deficit and amygdalar inflammation in mice. Mice were orally pre-treated with GB 20 mg/kg 1 h prior to 4 h restraint stress for 21 consecutive days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!