Purpose: The DNA-repair protein, O6-alkylguanine-DNA alkyl transferase, may account for resistance of CNS tumors to DNA-alkylating drugs, such as bis-(2-chloroethyl)-1-nitrosourea (BCNU). The therapeutic effects of BCNU can be potentiated by inhibiting the repair protein with an alkylated guanine analog, O6-benzyl guanine (O6BG). To investigate potential toxicity of this inhibition, we examined the effects of O6BG in mice treated with intracranial (i.c.) BCNU given via a biodegradable polymer.

Methods: Mice were treated with escalating doses of BCNU chronically delivered i.c., and with chronically delivered O6BG. The O6BG was delivered via a 7-day intraperitoneal (i.p.) or i.c. osmotic minipump. Toxicity of the combination therapies was measured from survival data. Bone marrow response was estimated from white blood cell counts.

Results: Combining systemic (i.p.) O6BG with locally (i.c.) delivered BCNU resulted in a decrease in the maximum tolerated dose (MTD) of local BCNU. With local delivery of O6BG, the MTD of BCNU in combination with O6BG was increased.

Conclusions: Based on the results of this study, a dose escalation study will be necessary when combining systemic O6BG with the higher doses of i.c. BCNU.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00280-002-0510-yDOI Listing

Publication Analysis

Top Keywords

bcnu
9
o6-benzyl guanine
8
o6bg
8
mice treated
8
doses bcnu
8
chronically delivered
8
combining systemic
8
systemic o6bg
8
delivered
5
toxicity intracranial
4

Similar Publications

Apigenin (Api), a flavonoid possessing dual features of antioxidant activity and intramolecular hydrogen bond (IMHB), is subjected to an external electric field (EEF) to investigate its excited-state antioxidant activity after excited state intramolecular proton transfer (ESIPT) behavior employing the density functional theory (DFT) and time-dependent DFT (TD-DFT) methods, as well as molecular docking. The existence of IMHB is demonstrated by structural parameters and AIM topological analysis, where Api in the enol form under an EEF of +60 × 10 a.u.

View Article and Find Full Text PDF

The treatment of relapsed/refractory acute myeloid leukemia (AML) is associated with a dismal prognosis. The allogeneic hematopoietic cell transplantation (allo-HCT) is frequently performed as salvage therapy. Reduced intensity conditioning protocols have been developed with the aim of reducing the leukemia burden without increasing their toxicity.

View Article and Find Full Text PDF

Prognostic feature based on androgen-responsive genes in bladder cancer and screening for potential targeted drugs.

BioData Min

December 2024

Department of Urology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.

Objectives: Bladder cancer (BLCA) is a tumor that affects men more than women. The biological function and prognostic value of androgen-responsive genes (ARGs) in BLCA are currently unknown. To address this, we established an androgen signature to determine the prognosis of BLCA.

View Article and Find Full Text PDF

Background: Peripheral T-cell lymphomas (PTCL) frequently result in relapsed or refractory diseases. Upfront autologous hematopoietic stem cell transplantation (ASCT) using the BEAM (carmustine, etoposide, cytarabine, and melphalan) regimen is recommended. However, relapses are common in PTCL, highlighting a critical need for improved survival outcomes in these patients.

View Article and Find Full Text PDF

Microfluidic Fabrication of Oleosin-Coated Liposomes as Anticancer Drug Carriers with Enhanced Sustained Drug Release.

Materials (Basel)

November 2024

Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea.

Microfluid-derived liposomes (M-Lipo) exhibit great potential as drug and functional substance carriers in pharmaceutical and food science. However, the low liposome membrane stability, attributed to the liquid core, limits their application range. Oleosin, a natural surfactant protein, can improve the stability of the lipid nanoparticle membrane against various environmental stresses, such as heat, drying, and pH change; in addition, it can enable sustained drug release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!