Terminal RNA replication elements in human parechovirus 1.

J Virol

Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom.

Published: December 2002

To define structural elements critical for RNA replication in human parechovirus 1 (HPeV1), a replicon with chloramphenicol acetyltransferase as a reporter gene and an infectious virus cDNA clone have been used. It was observed that there are cis-acting signals required for HPeV1 replication located within the 5'-terminal 112 nucleotides of the genome and that these include two terminal stem-loops, SL-A and SL-B, together with a pseudoknot element. Significant disruption of any of these structures impaired both RNA replication and virus growth. In view of the similarity in terminal structures to several picornaviruses, such as cardioviruses and hepatoviruses, the insights generated in this work are of wider significance for understanding picornavirus replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC136667PMC
http://dx.doi.org/10.1128/jvi.76.24.13116-13122.2002DOI Listing

Publication Analysis

Top Keywords

rna replication
12
human parechovirus
8
replication
5
terminal rna
4
replication elements
4
elements human
4
parechovirus define
4
define structural
4
structural elements
4
elements critical
4

Similar Publications

The first marine pestivirus, Phocoena pestivirus (PhoPeV), isolated from harbor porpoise, has been recently described. To further characterize this unique pestivirus, its host cell tropism and growth kinetics were determined in different cell lines. In addition, the interaction of PhoPeV with innate immunity in porcine epithelial cells and the role of selected cellular factors involved in the viral entry and RNA replication of PhoPeV were investigated in comparison to closely and distantly related pestiviruses.

View Article and Find Full Text PDF

The Rift Valley fever virus (RVFV) causes haemorrhagic fever, encephalitis, and permanent blindness and has been listed by the WHO as a priority pathogen. To study RVFV pathogenesis and identify small-molecule antivirals, we established a novel In Vivo model using zebrafish larvae. Pericardial injection of RVFV resulted in ~4 log viral RNA copies/larva, which was inhibited by the antiviral 2'-fluoro-2'-deoxycytidine.

View Article and Find Full Text PDF

Functional Verification of Differentially Expressed Genes Following DENV2 Infection in .

Viruses

January 2025

State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China.

The dengue virus (DENV) is primarily transmitted by . Investigating genes associated with mosquito susceptibility to DENV2 offers a theoretical foundation for targeted interventions to regulate or block viral replication and transmission within mosquitoes. Based on the transcriptomic analyses of the midgut and salivary glands from infected with DENV2, alongside analyses of Aag2 cell infections, 24 genes potentially related to the regulation of infection with DENV2 were selected.

View Article and Find Full Text PDF

Treatment options for viral infections are limited and viruses have proven adept at evolving resistance to many existing therapies, highlighting a significant vulnerability in our defenses. In response to this challenge, we explored the modulation of cellular RNA metabolic processes as an alternative paradigm to antiviral development. Previously, the small molecule 5342191 was identified as a potent inhibitor of HIV-1 replication by altering viral RNA accumulation at doses that minimally affect host gene expression.

View Article and Find Full Text PDF

Host RNA-Binding Proteins as Regulators of HIV-1 Replication.

Viruses

December 2024

Laboratory of Molecular and Cellular Virology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile.

RNA-binding proteins (RBPs) are cellular factors involved in every step of RNA metabolism. During HIV-1 infection, these proteins are key players in the fine-tuning of viral and host cellular and molecular pathways, including (but not limited to) viral entry, transcription, splicing, RNA modification, translation, decay, assembly, and packaging, as well as the modulation of the antiviral response. Targeted studies have been of paramount importance in identifying and understanding the role of RNA-binding proteins that bind to HIV-1 RNAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!