Expression of viral fusogenic membrane glycoproteins (FMGs) is a potent strategy for antitumor cytotoxic gene therapy in which tumor cells are fused into large multinucleated syncytia. To understand how local cell killing can potentiate activation of antitumor immune responses, we characterized the mechanism of FMG-mediated cell killing. Here, we show that syncytia are highly ordered structures over 24-48 h but then die through processes that, by multiple morphological and biochemical criteria, bear very little resemblance to classical apoptosis. Death of syncytia is associated with nuclear fusion and premature chromosome condensation as well as severe ATP depletion and autophagic degeneration, accompanied by release of vesicles reminiscent of exosomes (syncytiosomes). Dying syncytia produce significantly more syncytiosomes than normal cells or cells killed by irradiation, freeze thaw, or osmotic shock. These syncytiosomes also load dendritic cells (DCs) more effectively than exosomes from cells dying by other mechanisms. Finally, we demonstrate that syncytiosomes from either autologous or allogeneic fusing melanoma cells lead to cross-presentation of a defined tumor antigen, gp100, by DCs to a gp100-specific CTL clone. Cross-presentation was significantly more efficient than that with exosomes from normal, irradiated, or herpes simplex virus thymidine kinase/ganciclovir-killed tumor cells. Therefore, FMG-mediated cell killing combines very effective local tumor cell killing with the potential to be a highly immunogenic method of cytotoxic gene therapy. In addition, these data open the way for novel methods of loading DCs with relevant tumor-associated antigens for vaccine development.
Download full-text PDF |
Source |
---|
Dis Aquat Organ
January 2025
Department of Hydrobiology, Ichthyology and Biotechnology of Reproduction, West Pomeranian University of Technology in Szczecin, Kazimierza Królewicza 4, 71-550 Szczecin, Poland.
The 2022 Oder River disaster was one of the most significant harmful events in recent European river history, with an estimated 60% reduction in fish biomass in the lower section of the river. While the prevailing hypothesis attributes associated fish kills to toxins from golden algae Prymnesium parvum, our histopathological study on the gills of 2 common cyprinid fish species, namely vimba bream Vimba vimba (L.) and roach Rutilus rutilus (L.
View Article and Find Full Text PDFCell Death Differ
January 2025
Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), LMU University Hospital, Munich, Germany.
The cell death receptor FAS and its ligand (FASLG) play crucial roles in the selection of B cells during the germinal center (GC) reaction. Failure to eliminate potentially harmful B cells via FAS can lead to lymphoproliferation and the development of B cell malignancies. The classic form of follicular lymphoma (FL) is a prototypic GC-derived B cell malignancy, characterized by the t(14;18)(q32;q21)IGH::BCL2 translocation and overexpression of antiapoptotic BCL2.
View Article and Find Full Text PDFNPJ Vaccines
January 2025
Division of Molecular Microbiology, School of Life Sciences, Dundee, United Kingdom.
Group A Streptococcus (Strep A) is a human-exclusive bacterial pathogen killing annually more than 500,000 patients, and no current licensed vaccine exists. Strep A bacteria are highly diverse, but all produce an essential, abundant, and conserved surface carbohydrate, the Group A Carbohydrate, which contains a rhamnose polysaccharide (RhaPS) backbone. RhaPS is a validated universal vaccine candidate in a glycoconjugate prepared by chemical conjugation of the native carbohydrate to a carrier protein.
View Article and Find Full Text PDFInt Immunol
January 2025
Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Photodynamic therapy (PDT), a local cancer treatment using photosensitizers, has been reported to enhance antitumor immune responses by inducing immunogenic cell death. Although several studies have demonstrated the synergistic antitumor effects of PDT and immune checkpoint blockage (ICB), the detailed underlying mechanisms remain poorly understood. In this study, we investigated the immunological effects of PDT with talaporfin (Tal-PDT), a clinically approved photosensitizer, using bilateral tumor-bearing mouse models.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. Electronic address:
Glycosidic switch liposome (GSL) technology efficiently encapsulates and stabilizes potent anticancer drugs in liposomes using a reversible glucuronide ester. Enzymatic hydrolysis of the glucuronide switch in target cell lysosomes produces parental drug. Our study examined the potential of a bispecific macromolecule, a polyethylene glycol (PEG) engager (mPEG×EphA2), generated by fusing a humanized anti-methoxy PEG (mPEG) Fab with an anti-EphA2 single-chain antibody, to increase GSL uptake into cancer cells and boost the anticancer activity by targeting PEG on GSL and an internalizing tumor antigen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!