Composition of the heme centers in chromaffin granule cytochrome b(561).

Ann N Y Acad Sci

Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA.

Published: October 2002

Electron paramagnetic resonance and circular dichroism spectra of cytochrome b(561) from chromaffin granule membranes indicated a 2:1 stoichiometry of high- and low-potential hemes. Recombinant bovine cytochrome b(561) expressed in a baculovirus system retained native spectroscopic characteristics and represents a promising model for further study.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.2002.tb04507.xDOI Listing

Publication Analysis

Top Keywords

cytochrome b561
12
chromaffin granule
8
composition heme
4
heme centers
4
centers chromaffin
4
granule cytochrome
4
b561 electron
4
electron paramagnetic
4
paramagnetic resonance
4
resonance circular
4

Similar Publications

The human cytochrome b561 (hCytb561) family consists of electron transfer transmembrane proteins characterized by six conserved α-helical transmembrane domains and two β-type heme cofactors. These proteins contribute to the regulation of iron metabolism and numerous different physiological and pathological processes by recycling ascorbic acid and maintaining iron reductase activity. Key members of this family include cytochrome b561 (CYB561), duodenal CYB561 (Dcytb), lysosomal CYB561 (LCytb), stromal cell-derived receptor 2 (SDR2) and 101F6, which are widely expressed in human tissues and participate in the pathogenesis of several diseases and tumors.

View Article and Find Full Text PDF

Liver hepatocellular carcinoma (LIHC) is a malignancy characterized by a high rate of recurrence, metastasis, and poor prognosis. Cytochrome b561 (CYB561) has been previously reported to be associated with tumor progression, but it has not been revealed in LIHC. The aim of this study was to investigate the prognostic value and potential function of CYB561 in LICH.

View Article and Find Full Text PDF

Spotlight on cytochrome b561 and DOMON domain proteins.

Trends Plant Sci

December 2024

Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland.

Biotic and abiotic stresses constrain plant growth worldwide. Therefore, understanding the molecular mechanisms contributing to plant resilience is key to achieving food security. In recent years, proteins containing dopamine β-monooxygenase N-terminal (DOMON) and/or cytochrome b561 domains have been identified as important regulators of plant responses to multiple stress factors.

View Article and Find Full Text PDF

Ascorbic acid (AsA) serves as a key antioxidant involved in the various physiological processes and against diverse stresses in plants. Due to the insufficiency of AsA de novo biosynthesis, the AsA regeneration is essential to supplement low AsA synthesis rates. Redox reactions play a crucial role in response to biotic stress in plants; however, how AsA regeneration participates in hydrogen peroxide (HO) homeostasis and plant defense remains largely unknown.

View Article and Find Full Text PDF

Cell differentiation controls iron assimilation in a choanoflagellate.

bioRxiv

September 2024

Chan Zuckerberg Biohub & Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine, San Francisco, CA 94143.

Marine microeukaryotes have evolved diverse cellular features that link their life histories to surrounding environments. How those dynamic life histories intersect with the ecological functions of microeukaryotes remains a frontier to understand their roles in essential biogeochemical cycles. Choanoflagellates, phagotrophs that cycle nutrients through filter feeding, provide models to explore this intersection, for many choanoflagellate species transition between life history stages by differentiating into distinct cell types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!