Enzymatic degradation behavior and mechanism of poly(lactide-co-glycolide) foams by trypsin.

Biomaterials

Center for Molecular Science, Institute of Chemistry, Chinese Academy of Science, Beijing 100080, China.

Published: February 2003

The purpose of this study is to investigate the enzymatic degradation behaviors of porous poly(lactide-co-glycolide) (PLGA) foams in the presence of trypsin, in comparison with their hydrolytic degradation. To inspect the effect of trypsin on the degradation of PLGA, both the hydrolytic and enzymatic degradation of non-porous PLGA samples were also performed. The changes of molecular weight and molecular weight distribution (polydispersity) during the degradation were determined by gel permeation chromatograph. And the changes of weight, thickness and morphology with the degradation were also measured. The degradation of PLGA displayed as two stages. In the first stage, the molecular weight of PLGA decreased continuously with degradation time, whereas little weight loss occurred. But in the second stage, the molecular weight of PLGA had decreased to a low value and was almost unchanged with time, while the sample experienced significant weight loss. And it was found that the presence of trypsin could significantly accelerate the weight loss rates of all the PLGA samples, but it caused little difference in the decrease of molecular weight and the change of PLGA composition between the enzymatic and hydrolytic degradation. Therefore, the enzymatic degradation of PLGA was still primarily a hydrolysis process. A mechanism of enzymatic degradation was proposed that the trypsin could enhance the weight loss of PLGA by acting as surfactant to push the dispersion of degradation products into water even though they could not dissolve in water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0142-9612(02)00377-0DOI Listing

Publication Analysis

Top Keywords

enzymatic degradation
20
molecular weight
20
weight loss
16
degradation
12
degradation plga
12
plga
10
weight
10
presence trypsin
8
hydrolytic degradation
8
plga samples
8

Similar Publications

Efforts to reduce the impact of chemical processes on the environment are leading to a shift to enzymatic alternatives, with laccases standing out for their versatile substrate oxidation capabilities. This study addresses the improvement of biocatalytic reactions by deep eutectic solvents (DES), in particular DES-based aqueous two-phase systems (ATPS) for the extraction of biomolecules. Continuous laccase extraction from crude samples was achieved using a DES-based ATPS, which was first optimized in a batch extractor and later intensified in a microextractor.

View Article and Find Full Text PDF

Recombinant Antibodies Inhibit Enzymatic Activity of the E3 Ubiquitin Ligase CHIP via Multiple Mechanisms.

J Biol Chem

January 2025

Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:

Carboxyl-terminus of Hsp70-Interacting Protein (CHIP) is an E3 ubiquitin ligase that marks misfolded substrates for degradation. Hyper-activation of CHIP has been implicated in multiple diseases, including cystic fibrosis and cancer, suggesting that it may be a potential drug target. However, there are few tools available for exploring this possibility.

View Article and Find Full Text PDF

Telomerase in cancer- ongoing quest and future discoveries.

Mol Biol Rep

January 2025

Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

Telomerase, constituted by the dynamic duo of telomerase reverse transcriptase (TERT), the catalytic entity, and an integral RNA component (TERC), is predominantly suppressed in differentiated human cells due to postnatal transcriptional repression of the TERT gene. Dysregulation of telomerase significantly contributes to cancer development via telomere-dependent and independent mechanisms. Telomerase activity is often elevated in advanced cancers, with TERT reactivation and upregulation of TERC observed in early tumorigenesis.

View Article and Find Full Text PDF

Decoupled responses of soil microbial diversity and ecosystem functions to successive degeneration processes in alpine pioneer community.

Sci China Life Sci

January 2025

CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.

Many alpine ecosystems are undergoing vegetation degradation because of global changes, which are affecting ecosystem functioning and biodiversity. The ecological consequences of alpine pioneer community degradation have been less studied than glacial retreat or meadow degradation in alpine ecosystems. We document the comprehensive responses of microbial community characteristics to degradation processes using field-based sampling, conduct soil microcosm experiments to simulate the effects of global change on microorganisms, and explore their relationships to ecosystem functioning across stages of alpine pioneer community degradation.

View Article and Find Full Text PDF

Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!