Creatine kinase (CK) catalyzes the reversible conversion of creatine and ATP to phosphocreatine and ADP, thereby helping maintain energy homeostasis in the cell. Here we report the first X-ray structure of CK bound to a transition-state analogue complex (CK-TSAC). Cocrystallization of the enzyme from Torpedo californica (TcCK) with ADP-Mg(2+), nitrate, and creatine yielded a homodimer, one monomer of which was liganded to a TSAC complex while the second monomer was bound to ADP-Mg(2+) alone. The structures of both monomers were determined to 2.1 A resolution. The creatine is located with the guanidino nitrogen cis to the methyl group positioned to perform in-line attack at the gamma-phosphate of ATP-Mg(2+), while the ADP-Mg(2+) is in a conformation similar to that found in the TSAC-bound structure of the homologue arginine kinase (AK). Three ligands to Mg(2+) are contributed by ADP and nitrate and three by ordered water molecules. The most striking difference between the substrate-bound and TSAC-bound structures is the movement of two loops, comprising residues 60-70 and residues 323-332. In the TSAC-bound structure, both loops move into the active site, resulting in the positioning of two hydrophobic residues (one from each loop), Ile69 and Val325, near the methyl group of creatine. This apparently provides a specificity pocket for optimal creatine binding as this interaction is missing in the AK structure. In addition, the active site of the transition-state analogue complex is completely occluded from solvent, unlike the ADP-Mg(2+)-bound monomer and the unliganded structures reported previously.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi026655p | DOI Listing |
J Med Chem
January 2025
Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States.
DNPH1 is responsible for eliminating the epigenetically modified nucleotide, 5-hydroxymethyl-2'-deoxyuridine 5'-monophosphate (hmdUMP), preventing formation of hmdUTP, a mutation-inducing nucleotide. Loss of DNPH1 activity sensitizes PARP inhibition-resistant BRCA-deficient cancers by causing incorporation of hmdUTP into DNA. Hydrolysis of hmdUMP by DNPH1 proceeds through a covalent intermediate between Glu104 and 2-deoxyribose 5-phosphate, followed by hydrolysis, a reaction cycle with two transition states.
View Article and Find Full Text PDFChem Sci
January 2025
LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
Snake venom-secreted phospholipases A (svPLAs) are critical, highly toxic enzymes present in almost all snake venoms. Upon snakebite envenomation, svPLAs hydrolyze cell membrane phospholipids and induce pathological effects such as paralysis, myonecrosis, inflammation, or pain. Despite its central importance in envenomation, the chemical mechanism of svPLAs is poorly understood, with detrimental consequences for the design of small-molecule snakebite antidotes, which is highly undesirable given the gravity of the epidemiological data that ranks snakebite as the deadliest neglected tropical disease.
View Article and Find Full Text PDFNature
December 2024
Department of Chemistry, Scripps Research, La Jolla, California, USA.
The synthesis of a complex molecule begins from an initial design stage in which possible routes are triaged by strategy and feasibility, based on analogy to similar reactions. However, as molecular complexity increases, predictability decreases; inevitably, even experienced chemists resort to trial-and-error to identify viable intermediates en route to the target molecule. We encountered such a problem in the synthesis of picrotoxane sesquiterpenes in which pattern recognition methods anticipated success, but small variations in structure led to failure.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
We report a stereo-differentiating dynamic kinetic asymmetric Rh(I)-catalyzed Pauson-Khand reaction, which provides access to an array of thapsigargin stereoisomers. Using catalyst-control, a consistent stereochemical outcome is achieved at C2─for both matched and mismatched cases─regardless of the allene-yne C8 stereochemistry. The stereochemical configuration for all stereoisomers was assigned by comparing experimental vibrational circular dichroism (VCD) and C NMR to DFT-computed spectra.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Department of Chemistry, the University of Chicago, Chicago, Illinois 60637, United States.
The protein hormone insulin forms a homodimer that must dissociate to bind to its receptor. Understanding the kinetics and mechanism of dissociation is essential for the rational design of therapeutic analogs. In addition to its physiological importance, this dissociation process serves as a paradigm for coupled (un)folding and (un)binding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!