Treatment of AKR-2B fibroblasts with anisomycin (10 microM) led to a rapid disintegration of the cells (t1/2 = 5 h) which was complete after 24 h. Cell death was associated with typical hallmarks of apoptosis like membrane blebbing, exposure of phophatidylserine on the cell surface, nuclear condensation and specific cleavage of rRNA. However, there was no dissipation of the mitochondrial potential and no intranucleosomal fragmentation. By affinity labeling with YVK(-bio)D.aomk in combination with immunostaining against activated caspase-3 analyzed by 2-D gel electrophoresis it was shown that caspase-3 is the dominant executioner caspase. Gel filtration experiments of cytosolic extract analyzed by Western blotting revealed the formation of high-molecular-weight complexes of caspase-3 (600 kDa and 250 kDa, respectively), but there was no complex formation of Apaf-1. Anisomycin treatment led to a strong activation of the stress kinases p38 kinases and the jun kinases, that was not sufficient for the activation of caspase-3 which required much higher concentrations. By using the selective inhibitors SB 203580 for p38 kinases and SP 600125 for c-jun kinases, respectively, it is shown that activation of these kinases is not necessary for cell death induced by anisomycin in AKR-2B cells. Furthermore, we disclose the activation of caspase-12 in AKR-2B cells following the addition of anisomycin. Caspase-12 zymogen present as a cytosolic complex (> 600 kDa) is activated by anisomycin leading to an uncomplexed cleaved enzyme. Since anisomycin treatment did neither lead to stress of the endoplasmic reticulum nor to a breakdown of intracellular Ca(2+)-stores, alternative pathways involved in the activation of caspases are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1078/0171-9335-00276DOI Listing

Publication Analysis

Top Keywords

akr-2b cells
12
cell death
8
600 kda
8
anisomycin treatment
8
p38 kinases
8
anisomycin
6
kinases
6
activation
5
formation caspase-3
4
caspase-3 complexes
4

Similar Publications

Purpose: It is hypothesized that venous stenosis formation associated with hemodialysis vascular-access failure is caused by hypoxia-mediated fibroblast-to-myofibroblast differentiation accompanied by proliferation and migration, and that diabetic patients have worse clinical outcomes. The aim of this study was to determine the functional and gene expression outcomes of matrix metalloproteinase-2 (Mmp-2) silencing in fibroblasts cultured under hyperglycemia and euglycemia with hypoxic and normoxic stimuli.

Materials And Methods: AKR-2B fibroblasts were stably transduced using lentivirus-mediated shRNA-Mmp-2 or scrambled controls and subjected to hypoxia or normoxia under hyperglycemic or euglycemic conditions for 24 and 72 h.

View Article and Find Full Text PDF

Purpose: Hemodialysis grafts fail because of venous neointimal hyperplasia formation caused by adventitial fibroblasts that have become myofibroblasts (ie, alpha-smooth muscle actin [SMA]-positive cells) and migrate to the neointima. There is increased expression of hypoxia-inducible factor (HIF)-1alpha in venous neointimal hyperplasia formation in experimental animal models and clinical samples. It was hypothesized that, under hypoxic stimulus (ie, HIF-1alpha), fibroblasts will convert to myofibroblasts through a matrix metalloproteinase (MMP)-2-mediated pathway.

View Article and Find Full Text PDF

Glycation of PDGF results in decreased biological activity.

Int J Biochem Cell Biol

May 2010

Martin-Luther University Halle-Wittenberg, Department of Cardiothoracic Surgery, Ernst-Grube Str. 40, D-06120 Halle/Saale, Germany.

Advanced glycation end products (AGEs) are formed by the non-enzymatic glycation of proteins by reducing carbohydrates or alpha-oxo-aldehydes such as glyoxal and methylglyoxal and further rearrangements, eliminations and oxidations. AGE-modifications alter peptide structure, function and stability and accumulate under several pathophysiological conditions such as diabetes and are considered a biomarker of ageing. PDGF is a major regulator of wound healing, which is impaired in hyperglycaemia and ageing.

View Article and Find Full Text PDF

Transforming growth factor beta (TGF-beta) was originally identified by virtue of its ability to induce transformation of the AKR-2B and NRK fibroblasts but was later found to be a potent inhibitor of the growth of epithelial, endothelial, and lymphoid cells. Although the growth-inhibitory pathway of TGF-beta mediated by the Smad proteins is well studied, the signaling pathway leading to the transforming activity of TGF-beta in fibroblasts is not well understood. Here we show that SnoN, a member of the Ski family of oncoproteins, is required for TGF-beta-induced proliferation and transformation of AKR-2B and NRK fibroblasts.

View Article and Find Full Text PDF

Mutations dislocate caspase-12 from the endoplasmatic reticulum to the cytosol.

FEBS Lett

October 2004

Physiological Chemistry, Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.

Mouse AKR-2B cells express two forms of caspase-12: the full-length form coding for a protein of 47.8 kDa and a new splice variant of 40.2 kDa which is devoid of the CARD domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!