The calpains form a growing family of structurally related intracellular multidomain cysteine proteinases containing a papain-related catalytic domain, whose activity depends on calcium. The calpains are believed to play important roles in cytoskelatel remodeling processes, cell differentiation, apoptosis and signal transduction, but are also implicated in a number of diseases. Recent crystal structures of truncated rat and full-length human apo-m-calpain revealed the domain arrangement and explained the inactivity of m-calpain in the absence of calcium by a disrupted catalytic domain. Proteolysis studies have indicated several susceptible sites, in particular in the catalytic subdomain IIb and in the following domain III, which are more accessible to attacking proteinases in the presence than in the absence of calcium. The current view is that m-calpain exhibits a number of calcium binding sites, which upon calcium binding cooperatively interact, triggering the reformation of a papain-like catalytic domain, accompanied by enhanced mobilisation of the whole structure. To further analyse the flexibility of m-calpain, we have determined and refined the human full-length apo-m-calpain structure of a second crystal form to 3.15 A resolution. Here we present this new structure, compare it with our first structure now re-refined with tighter constrain parameters, discuss the flexibility in context with the proteolysis and calcium binding data available, and suggest implications for the calcium-induced activation process.

Download full-text PDF

Source
http://dx.doi.org/10.1515/BC.2002.160DOI Listing

Publication Analysis

Top Keywords

catalytic domain
12
calcium binding
12
absence calcium
8
calcium
6
structure
5
domain
5
flexibility analysis
4
analysis structure
4
structure comparison
4
comparison crystal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!