Quartz crystal microbalance expanded capability for studying CuCl crystal formation on copper surfaces.

Chemphyschem

IFGW (Physics Institute Gleb Wataghin), UNICAP (State University at Campinas), Cx.P. 6165, 13083-970, Campinas, SP, Brazil.

Published: September 2002

Download full-text PDF

Source
http://dx.doi.org/10.1002/1439-7641(20020916)3:9<817::AID-CPHC817>3.0.CO;2-UDOI Listing

Publication Analysis

Top Keywords

quartz crystal
4
crystal microbalance
4
microbalance expanded
4
expanded capability
4
capability studying
4
studying cucl
4
cucl crystal
4
crystal formation
4
formation copper
4
copper surfaces
4

Similar Publications

Flexible deformation and special interface structure in nanoparticle-stabilized Pickering bubbles strengthen the immunological response as adjuvant.

J Mater Chem B

January 2025

State Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Adjuvants can enhance an immunological response, which is an important part of vaccine research. Pickering bubbles have been a mega-hit for biomedical applications, including visualization and targeted drug delivery. However, there have been no studies on Pickering bubbles as an immunological adjuvant, and the special properties and structures of Pickering bubbles may play an important role in immunization.

View Article and Find Full Text PDF

Developing scaffolds supporting functional cell attachment and tissue growth is critical in basic cell research, tissue engineering, and regenerative medicine approaches. Though poly(ethylene glycol) (PEG) and its derivatives are attractive for hydrogels and scaffold fabrication, they often require bioactive modifications due to their bioinert nature. In this work, biomimetic synthesized conductive polypyrrole-poly(3,4-ethylenedioxythiophene) copolymer doped with poly(styrenesulfonate) (PPy-PEDOT:PSS) was used as a biocompatible coating for poly(ethylene glycol) diacrylate (PEGDA) hydrogel to support neuronal and muscle cells' attachment, activity, and differentiation.

View Article and Find Full Text PDF

One-step antifouling coating of polystyrene using engineered polypeptides.

J Colloid Interface Sci

January 2025

Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4 6708 WE Wageningen, The Netherlands. Electronic address:

Unwanted nonspecific adsorption caused by biomolecules influences the lifetime of biomedical devices and the sensing performance of biosensors. Previously, we have designed B-M-E triblock proteins that rapidly assemble on inorganic surfaces (gold and silica) and render those surfaces antifouling. The B-M-E triblock proteins have a surface-binding domain B, a multimerization domain M and an antifouling domain E.

View Article and Find Full Text PDF

Chirality, a pervasive form of symmetry, is intimately connected to the physical properties of solids, as well as the chemical and biological activity of molecular systems. However, inducing chirality in a nonchiral material is challenging because this requires that all mirrors and all roto-inversions be simultaneously broken. Here, we show that chirality of either handedness can be induced in the nonchiral piezoelectric material boron phosphate (BPO) by irradiation with terahertz pulses.

View Article and Find Full Text PDF

Various polycations and polyanions were sequentially adsorbed onto the gold electrode of a quartz crystal microbalance with dissipation monitoring. The study focused on determining the adsorption kinetics, viscoelastic properties, and electroresponsivity of polyelectrolyte layers. For the first time, it was demonstrated that the structure (compact or expanded) of the layers can be determined by electroresponsivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!