In the present study, we have determined the nature and the kinetics of the cellular events triggered by the exposure of cells to non-fibrillar amyloid-beta peptide (A beta). When cortical neurons were treated with low concentrations of soluble A beta (1-40), an early reactive oxygen species (ROS)-dependent cytoskeleton disruption precedes caspase activation. Indeed, caspase activation and neuronal cell death were prevented by the microtubule-stabilizing drug taxol. A perturbation of the microtubule network was noticeable after being exposed to A beta for 1 h, as revealed by electron microscopy and immunocytochemistry. Microtubule disruption and neuronal cell death induced by A beta were inhibited in the presence of antioxidant molecules, such as probucol. These data highlight the critical role of ROS production in A beta-mediated cytoskeleton disruption and neuronal cell death. Finally, using FRAP (fluorescence recovery after photo bleaching) analysis, we observed a time-dependent biphasic modification of plasma membrane fluidity, as early as microtubule disorganization. Interestingly, molecules that inhibited neurotubule perturbation and cell death did not affect the membrane destabilizing properties of A beta, suggesting that the lipid phase of the plasma membrane might represent the earliest target for A beta. Altogether our results convey the idea that upon interaction with the plasma membrane, the non-fibrillar A beta induces a rapid ROS-dependent disorganization of the cytoskeleton, which results in apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M206745200DOI Listing

Publication Analysis

Top Keywords

cell death
20
neuronal cell
16
plasma membrane
12
death induced
8
non-fibrillar amyloid-beta
8
amyloid-beta peptide
8
early reactive
8
reactive oxygen
8
cytoskeleton disruption
8
caspase activation
8

Similar Publications

Background And Aim: The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer.

View Article and Find Full Text PDF

Docetaxel (DTX) is widely utilized in breast cancer treatment. However, cancer cell resistance has limited its anti-tumor efficacy. Some molecules called microRNAs (miRNAs), acting like fine-tuned switches, can influence how breast cancer develops and spreads.

View Article and Find Full Text PDF

Background: Ferroptosis is a cell death process that depends on iron and reactive oxygen species. It significantly contributes to cardiovascular diseases. However, its exact role in ischemic cardiomyopathy (ICM) is still unclear.

View Article and Find Full Text PDF

Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.

Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.

View Article and Find Full Text PDF

Combination therapy with checkpoint inhibitors blocks inhibitory immune cell signaling and improves clinical responses to anticancer treatments. However, continued development of innovative and controllable delivery systems for immune-stimulating agents is necessary to optimize clinical responses. Herein, we engineered to deliver recombinant granulocyte macrophage colony stimulating factor (GM-CSF) in a controllable manner for combination treatment with a programmed death-ligand 1 (PD-L1) inhibitor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!