Human cells transport dehydroascorbic acid through facilitative glucose transporters, in apparent contradiction with evidence indicating that vitamin C is present in human blood only as ascorbic acid. On the other hand, activated host defense cells undergoing the oxidative burst show increased vitamin C accumulation. We analyzed the role of the oxidative burst and the glucose transporters on vitamin C recycling in an in vitro system consisting of activated host-defense cells co-cultured with human cell lines and primary cells. We asked whether human cells can acquire vitamin C by a "bystander effect" by taking up dehydroascorbic acid generated from extracellular ascorbic acid by neighboring cells undergoing the oxidative burst. As activated cells, we used HL-60 neutrophils and normal human neutrophils activated with phorbol 12 myristate 13-acetate. As bystander cells, we used immortalized cell lines and primary cultures of human epithelial and endothelial cells. Activated cells produced superoxide anions that oxidized extracellular ascorbic acid to dehydroascorbic acid. At the same time, there was a marked increase in vitamin C uptake by the bystander cells that was blocked by superoxide dismutase but not by catalase and was inhibited by the glucose transporter inhibitor cytochalasin B. Only ascorbic acid was accumulated intracellularly by the bystander cells. Glucose partially blocked vitamin C uptake by the bystander cells, although it increased superoxide production by the activated cells. We conclude that the local production of superoxide anions by activated cells causes the oxidation of extracellular ascorbic acid to dehydroascorbic acid, which is then transported by neighboring cells through the glucose transporters and immediately reduced to ascorbic acid intracellularly. In addition to causing increased intracellular concentrations of ascorbic acid with likely associated enhanced antioxidant defense mechanisms, the bystander effect may allow the recycling of vitamin C in vivo, which may contribute to the low daily requirements of the vitamin in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M210686200 | DOI Listing |
Talanta
January 2025
College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
Monitoring reactive nitrogen species (RNS) in complex biological media is essential for evaluating the health status of living organisms; however, biofouling on the sensor surface restricts its applications. To overcome this issue, we developed an antifouling electrochemical sensing platform using copper-platinum bimetallic nanoparticles/N-doped biomass porous carbon fibres (Cu-PtNPs/N-BCF) for directly detecting peroxynitrite anion (ONOO), a major type of RNS. Cyclic voltammetry measurements demonstrated that the Cu-PtNPs/N-BCF-2 nanocomposite, synthesised at a molar ratio of 1:1 between Co and Zn, exhibited exceptional electrocatalytic activity for ONOO oxidation.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 22, Kerala, India.
The rise of various diseases demands the development of new agents with antioxidant, antimicrobial, anti-inflammatory, enzyme-inhibiting, and cytotoxic properties. In this study, heterocyclic Schiff base complexes of Cu(II) featuring a benzo[]thiophene moiety were synthesized and their biological activities evaluated. The complexes were characterized using FT-IR, UV-Vis, and EPR spectroscopy, TG-DTG analysis, magnetic moment measurements, molar conductivity measurements, and elemental analyses.
View Article and Find Full Text PDF<b>Background and Objective:</b> Methotrexate is an anti-metabolic medication used to treat cancer. It causes oxidative stress in nerve tissue and has neurotoxic effects. A strong antioxidant and effective free radical scavenger is vitamin C.
View Article and Find Full Text PDFJ Appl Physiol (1985)
January 2025
Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309.
: Cerebrovascular disease and dementia risk increases with age and lifetime risk is greater in women. Cerebrovascular dysfunction likely precedes cerebrovascular disease and dementia but the mechanisms are incompletely understood. We hypothesized that oxidative stress mediates cerebrovascular dysfunction with human aging.
View Article and Find Full Text PDFFood Chem
January 2025
College of Life Sciences, Dalian Minzu University, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!