Gaucher disease is a lysosomal storage disorder caused by deficient lysosomal beta-glucosidase (beta-Glu) activity. A marked decrease in enzyme activity results in progressive accumulation of the substrate (glucosylceramide) in macrophages, leading to hepatosplenomegaly, anemia, skeletal lesions, and sometimes CNS involvement. Enzyme replacement therapy for Gaucher disease is costly and relatively ineffective for CNS involvement. Chemical chaperones have been shown to stabilize various proteins against misfolding, increasing proper trafficking from the endoplasmic reticulum. We report herein that the addition of subinhibitory concentrations (10 microM) of N-(n-nonyl)deoxynojirimycin (NN-DNJ) to a fibroblast culture medium for 9 days leads to a 2-fold increase in the activity of N370S beta-Glu, the most common mutation causing Gaucher disease. Moreover, the increased activity persists for at least 6 days after the withdrawal of the putative chaperone. The NN-DNJ chaperone also increases WT beta-Glu activity, but not that of L444P, a less prevalent Gaucher disease variant. Incubation of isolated soluble WT enzyme with NN-DNJ reveals that beta-Glu is stabilized against heat denaturation in a dose-dependent fashion. We propose that NN-DNJ chaperones beta-Glu folding at neutral pH, thus allowing the stabilized enzyme to transit from the endoplasmic reticulum to the Golgi, enabling proper trafficking to the lysosome. Clinical data suggest that a modest increase in beta-Glu activity may be sufficient to achieve a therapeutic effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC137733PMC
http://dx.doi.org/10.1073/pnas.192582899DOI Listing

Publication Analysis

Top Keywords

gaucher disease
20
beta-glu activity
12
chemical chaperones
8
activity n370s
8
cns involvement
8
proper trafficking
8
endoplasmic reticulum
8
activity
7
beta-glu
6
gaucher
5

Similar Publications

Recently, a novel African ancestry specific Parkinson's disease (PD) risk signal was identified at the gene encoding glucocerebrosidase ( ). This variant (rs3115534-G) is carried by ∼50% of West African PD cases and imparts a dose-dependent increase in risk for disease. The risk variant has varied frequencies across African ancestry groups, but is almost absent in European and Asian ancestry populations.

View Article and Find Full Text PDF

Developing Allosteric Chaperones for -Associated Disorders-An Integrated Computational and Experimental Approach.

Int J Mol Sci

December 2024

Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, 08028 Barcelona, Spain.

Mutations in the gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase), are associated with Gaucher disease and increased risk of Parkinson's disease. This study describes the discovery and characterization of novel allosteric pharmacological chaperones for GCase through an innovative computational approach combined with experimental validation. Utilizing virtual screening and structure-activity relationship optimization, researchers identified several compounds that significantly enhance GCase activity and stability across various cellular models, including patient-derived fibroblasts and neuronal cells harboring mutations.

View Article and Find Full Text PDF

Background: Gaucheromas, pseudotumors composed of Gaucher cells, are rare complications of Gaucher's Disease (GD). They are usually seen in patients receiving enzyme replacement. Surgery is generally not recommended for these benign masses in treatment management.

View Article and Find Full Text PDF

Gaucher disease (GD) is a rare genetic disorder with multi-system involvement. Liver fibrosis is a long-term complication of GD, potentially leading to cirrhosis, end-stage liver disease, and hepatocellular carcinoma. There are currently no validated clinical tools for the monitoring of liver fibrosis in patients with GD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!