We showed previously that bacterially expressed full-length human wild-type p53b(1-393) binds selectively to supercoiled (sc)DNA in sc/linear DNA competition experiments, a process we termed supercoil-selective (SCS) binding. Using p53 deletion mutants and pBluescript scDNA (lacking the p53 recognition sequence) at native superhelix density we demonstrate here that the p53 C-terminal domain (amino acids 347-382) and a p53 oligomeric state are important for SCS binding. Monomeric p53(361-393) protein (lacking the p53 tetramerization domain, amino acids 325-356) did not exhibit SCS binding while both dimeric mutant p53(319- 393)L344A and fusion protein GCN4-p53(347-393) were effective in SCS binding. Supershifting of p53(320-393)-scDNA complexes with monoclonal antibodies revealed that the amino acid region 375-378, constituting the epitope of the Bp53-10.1 antibody, plays a role in binding of the p53(320-393) protein to scDNA. Using electron microscopy we observed p53-scDNA nucleoprotein filaments produced by all the C-terminal proteins that displayed SCS binding in the gel electrophoresis experiments; no filaments formed with the monomeric p53(361- 393) protein. We propose a model according to which two DNA duplexes are compacted into p53-scDNA filaments and discuss a role for filament formation in recombination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC137164PMC
http://dx.doi.org/10.1093/nar/gkf616DOI Listing

Publication Analysis

Top Keywords

scs binding
20
lacking p53
8
domain amino
8
amino acids
8
binding
7
p53
6
scs
5
role tumor
4
tumor suppressor
4
suppressor p53
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!