Plasmodium falciparum may cause severe forms of malaria when excessive sequestration of infected and uninfected erythrocytes occurs in vital organs. The capacity of wild-type isolates of P falciparum-infected erythrocytes (parasitized red blood cells [pRBCs]) to bind glycosaminoglycans (GAGs) such as heparin has been identified as a marker for severe disease. Here we report that pRBCs of the parasite FCR3S1.2 and wild-type clinical isolates from Uganda adhere to heparan sulfate (HS) on endothelial cells. Binding to human umbilical vein endothelial cells (HUVECs) and to human lung endothelial cells (HLECs) was found to be inhibited by HS/heparin or enzymes that remove HS from cell surfaces. (35)S-labeled HS extracted from HUVECs bound directly to the pRBCs' membrane. Using recombinant proteins corresponding to the different domains of P falciparum erythrocyte membrane protein 1 (PfEMP1), we identified Duffy-binding-like domain-1alpha (DBL1alpha) as the ligand for HS. DBL1alpha bound in an HS-dependent way to endothelial cells and blocked the adherence of pRBCs in a dose-dependent manner. (35)S-labeled HS bound to DBL1alpha-columns and eluted as a distinct peak at 0.4 mM NaCl. (35)S-labeled chondroitin sulfate (CS) of HUVECs did not bind to PfEMP1 or to the pRBCs' membrane. Adhesion of pRBCs of FCR3S1.2 to platelet endothelial cell adhesion molecule-1 (PECAM-1)/CD31, mediated by the cysteine-rich interdomain region 1alpha (CIDR1alpha), was found be operative with, but independent of, the binding to HS. HS and the previously identified HS-like GAG on uninfected erythrocytes may act as coreceptors in endothelial and erythrocyte binding of rosetting parasites, causing excessive sequestration of both pRBCs and RBCs.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2002-07-2016DOI Listing

Publication Analysis

Top Keywords

endothelial cells
20
heparan sulfate
8
sulfate endothelial
8
falciparum-infected erythrocytes
8
excessive sequestration
8
uninfected erythrocytes
8
prbcs' membrane
8
endothelial
7
cells
6
cells mediates
4

Similar Publications

Cardiovascular and cardiometabolic diseases are leading causes of morbidity and mortality worldwide, driven in part by chronic inflammation. Emerging research suggests that the bone marrow microenvironment, or marrow niche, plays a critical role in both immune system regulation and disease progression. The bone marrow niche is essential for maintaining hematopoietic stem cells (HSCs) and orchestrating hematopoiesis.

View Article and Find Full Text PDF

Purpose: This study aimed to evaluate the long-term impact of mild COVID-19 infection and COVID-19 vaccination on ovarian function in patients undergoing assisted reproductive technology (ART). Specifically, we assessed ovarian outcomes between 9 and 18 months post-infection and investigated the effects of COVID-19 vaccines (inactivated virus and adenovirus) on reproductive parameters.

Methods: The study included two objectives: (a) examining ovarian function in post-COVID-19 patients (9-18 months post-infection) compared to a control group and (b) comparing reproductive outcomes in vaccinated versus unvaccinated patients.

View Article and Find Full Text PDF

Background: Growing evidence indicates that noncombustible products could be a tobacco harm reduction tool for smokers who do not quit. The Tobacco Heating System (THS) emits substantially lower levels of harmful cigarette smoke constituents, and previous randomized clinical studies showed improved levels of biomarkers of potential harm (BoPH) linked to smoking-related disease.

Methods: In this cross-sectional study of healthy participants (n = 982) who (i) smoked cigarettes, (ii) had voluntarily switched from smoking to THS use, or (iii) formerly smoked, blood and urine samples were assayed for nine BoPH.

View Article and Find Full Text PDF

High Glucose Treatment Induces Nuclei Aggregation of Microvascular Endothelial Cells via the - Pathway.

Arterioscler Thromb Vasc Biol

January 2025

Research Center of Clinical Medicine, Affiliated Hospital, Nantong University, China. (X.W., D.L.).

Background: Hyperglycemia is a major contributor to endothelial dysfunction and blood vessel damage, leading to severe diabetic microvascular complications. Despite the growing body of research on the underlying mechanisms of endothelial cell (EC) dysfunction, the available drugs based on current knowledge fall short of effectively alleviating these complications. Therefore, our endeavor to explore novel insights into the cellular and molecular mechanisms of endothelial dysfunction is crucial for the field.

View Article and Find Full Text PDF

XOR-Derived ROS in Tie2-Lineage Cells Including Endothelial Cells Promotes Aortic Aneurysm Progression in Marfan Syndrome.

Arterioscler Thromb Vasc Biol

January 2025

Department of Cardiovascular Medicine, The University of Tokyo, Bunkyo-ku, Japan. (H. Yagi, H.A., Q.L., A.S.-K., M.U., H.K., R.M., A.S., S.O., H.T., Norifumi Takeda, I.K.).

Background: Marfan syndrome (MFS) is an inherited disorder caused by mutations in the gene encoding fibrillin-1, a matrix component of extracellular microfibrils. The main cause of morbidity and mortality in MFS is thoracic aortic aneurysm and dissection, but the underlying mechanisms remain undetermined.

Methods: To elucidate the role of endothelial XOR (xanthine oxidoreductase)-derived reactive oxygen species in aortic aneurysm progression, we inhibited in vivo function of XOR either by endothelial cell (EC)-specific disruption of the gene or by systemic administration of an XOR inhibitor febuxostat in MFS mice harboring the missense mutation p.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!