Multiple myeloma (MM) is characterized by clonal expansion of malignant plasma cells in the bone marrow and their egress into peripheral blood with progression to plasma cell leukemia. Our previous study defined a functional role of CD40 activation in MM cell homing and migration. In this study, we examine signaling events mediating CD40-induced MM cell migration. We show that cross-linking CD40, using either soluble CD40L (sCD40L) or anti-CD40 monoclonal antibody (mAb), induces phosphatidylinositol 3-kinase (PI3K) activity and activates its downstream effector AKT in MM.1S cells. CD40 activation also activates the MAP kinase (MEK) pathway, evidenced by phosphorylation of extracellular signal-regulated mitogen-activated protein kinase (ERK), but not c-jun amino-terminal kinase (JNK) or p38, in a dose- and time-dependent manner. Using pharmacologic inhibitors of PI3K and MEK, as well as adenoviruses expressing dominant-negative and constitutively expressed AKT, we demonstrate that PI3K and AKT activities are required for CD40-induced MM cell migration. In contrast, inhibition of ERK/MEK phosphorylation only partially (10%-15%) prevents migration, suggesting only a minor role in regulation of CD40-mediated MM migration. We further demonstrate that CD40 induces nuclear factor (NF)-kappa B activation as a downstream target of PI3K/AKT signaling, and that inhibition of NF-kappa B signaling using specific inhibitors PS1145 and SN50 completely abrogates CD40-induced MM migration. Finally, we demonstrate that urokinase plasminogen activator (uPA), an NF-kappa B target gene, is induced by CD40; and conversely, that uPA induction via CD40 is blocked by PI3K and NF-kappa B inhibitors. Our data therefore indicate that CD40-induced MM cell migration is primarily mediated via activation of PI3K/AKT/NF-kappa B signaling, and further suggest that novel therapies targeting this pathway may inhibit MM cell migration associated with progressive MM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood-2002-09-2813 | DOI Listing |
J Transl Med
January 2025
Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
Background: Drug resistance constitutes one of the principal causes of poor prognosis in breast cancer patients. Although cancer cells can maintain viability independently of mitochondrial energy metabolism, they remain reliant on mitochondrial functions for the synthesis of new DNA strands. This dependency underscores a potential link between mitochondrial energy metabolism and drug resistance.
View Article and Find Full Text PDFBMC Complement Med Ther
January 2025
Division of Pharmacology and Biopharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand.
Background: Plant flavonoids such as quercetin are useful for both the therapeutic and preventive care of a variety of illnesses. Nevertheless, their antitumor efficacy against KON oral cancer is still unknown. Therefore, the aim of this investigation was to examine quercetin's anti-growth, anti-migrative, and anti-invasive characteristics.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China.
Background: Intracellular membraneless organelles formed by liquid-liquid phase separation (LLPS) function in diverse physiological processes and have been linked to tumor-promoting properties. The nucleolus is one of the largest membraneless organelle formed through LLPS. Deubiquitylating enzymes (DUBs) emerge as novel therapeutic targets against human cancers.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.
Objective: The effect of coiled-coil domain-containing 154 (CCDC154) in liver cancer (LC) remains unexplored. The objective of this study was to investigate the role of CCDC154 in LC and its underlying mechanism.
Methods: The analysis of CCDC154 expression and prognosis was performed using UALCAN, Human Protein Atlas and Kaplan-Meier plotter websites.
Cell Mol Biol Lett
January 2025
Clinical Research Center, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201800, China.
Background: Circular (circ)RNAs have emerged as crucial contributors to cancer progression. Nonetheless, the expression regulation, biological functions, and underlying mechanisms of circRNAs in mediating hepatocellular carcinoma (HCC) progression remain insufficiently elucidated.
Methods: We identified circUCK2(2,3) through circRNA sequencing, RT-PCR, and Sanger sequencing.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!