The performance of lift-hyperlayer asymmetrical flow field-flow fractionation using rapid elution conditions was tested through the separation of standard polystyrene latex particles of diameters from 2 to 20 microm. Optimization of flowrates was studied not only in order to obtain efficient and rapid separation, but also to work under conditions of various shape and steepness of the axial flow velocity gradient. Using extreme flow conditions, the five widely spaced particle sizes, 20.5-, 15.0-, 9.7-, 5.0-, and 2.0-microm diameter, could be resolved in 6 min, whereas for the narrower size range of 20.5-5.0 microm, 1 min was enough. The size selectivity in the size range 9.7-2.0 microm was studied as a function of flowrates and particle size and was found to be constant. A particle trapping device made it possible to separate particles of sizes > 10 microm, which has previously proven to be difficult in asymmetrical channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac020315s | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!