Objective. To investigate the rule of change of intracellular Ca2+ and its measurement method during exposure to hyperbaric oxygen (HBO). Method. Microfluorescence method was used to measure the changes of intracellular Ca2+ concentration in co-cultured endothelial cells (EC) and smooth muscle cells (SMC) in a specially designed miniature oxygen chamber. Result. (1) [Ca2+]i changes during HBO exposure can be clearly observed directly in the chamber. (2) Within 5 min during 0.2 MPa and 0.3 MPa HBO exposure, EC[Ca2+]i and SMC[Ca2+]i showed a tendency, to increase at first and then decrease with time throughout the exposures, especially the SMC[Ca2+]i. The EC ruptured under exposure to 0.4 MPa HBO. Conclusion. During HBO exposure, EC[Ca2+]i and SMC[Ca2+]i showed biphasic changes, which increased at first and then decreased. The technique and method used were reliable and suitable for investigating of intracellular [Ca2+]i changes under HBO.

Download full-text PDF

Source

Publication Analysis

Top Keywords

intracellular ca2+
12
hbo exposure
12
exposure hyperbaric
8
[ca2+]i changes
8
changes hbo
8
mpa hbo
8
exposure ec[ca2+]i
8
ec[ca2+]i smc[ca2+]i
8
exposure
6
hbo
6

Similar Publications

Assembly and functional mechanisms of plant NLR resistosomes.

Curr Opin Struct Biol

January 2025

School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China. Electronic address:

Nucleotide-binding and leucine-rich repeat (NLR) proteins are essential intracellular immune receptors in both animal and plant kingdoms. Sensing of pathogen-derived signals induces oligomerization of NLR proteins, culminating in the formation of higher-order protein complexes known as resistosomes in plants. The NLR resistosomes play a pivotal role in mediating the plant immune response against invading pathogens.

View Article and Find Full Text PDF

A sustained blood-stage infection of the human malaria parasite P. falciparum relies on the active exit of merozoites from their host erythrocytes. During this process, named egress, the infected red blood cell undergoes sequential morphological events: the rounding-up of the surrounding parasitophorous vacuole, the disruption of the vacuole membrane and finally the rupture of the red blood cell membrane.

View Article and Find Full Text PDF

Piezo1 Enhances Macrophage Phagocytosis and Pyrin Activation to Ameliorate Fungal Keratitis.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.

Purpose: Fungal keratitis (FK) remains a treatment challenge, necessitating new therapeutic targets. Piezo1, a mechanosensitive ion channel, regulates calcium signaling and immune cell function. This study investigates its role in macrophage-mediated antifungal responses in FK.

View Article and Find Full Text PDF

Traditional Chinese Medicine Borneol-Based Polymeric Micelles Intracerebral Drug Delivery System for Precisely Pathogenesis-Adaptive Treatment of Ischemic Stroke.

Adv Sci (Weinh)

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.

The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.

View Article and Find Full Text PDF

Inositol 1,4,5-trisphosphate receptors (IP3R) mediate Ca2+ release from intracellular stores, contributing to complex regulation of numerous physiological responses. The involvement of the three IP3R genes (ITPR1, ITPR2 and ITPR3) in inherited human diseases has started to shed light on the essential roles of each receptor in different human tissues and cell types. Variants in the ITPR3 gene, which encodes IP3R3, have recently been found to cause demyelinating sensorimotor Charcot-Marie-Tooth neuropathy type 1J (CMT1J).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!