The green tea polyphenol, epigallocatechin-3-gallate, protects against the oxidative cellular and genotoxic damage of UVA radiation.

Int J Cancer

Department of Biological Sciences, Institute of Environmental and Natural Sciences, Lancaster University, Lancaster, United Kingdom.

Published: December 2002

A number of biological activities have been ascribed to the major green tea polyphenol epigallocatechin-3-gallate (EGCG) to explain its chemopreventive properties. Its antioxidant properties emerge as a potentially important mode of action. We have examined the effect of EGCG treatment on the damaging oxidative effects of UVA radiation in a human keratinocyte line (HaCaT). Using the ROS-sensitive probes dihydrorhodamine 123 (DHR) and 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), we detected a reduction in fluorescence in UVA-irradiated (100 kJ/m(2)) cells in the case of the former but not the latter probe after a 24-hr treatment with EGCG (e.g., 14%, [p < 0.05] after 10 microM EGCG). In the absence of UVA, however, both DHR and DCFH detected a pro-oxidant effect of EGCG at the highest concentration used of 50 microM. Measurements of DNA damage in UVA-exposed cells using the single cell gel electrophoresis assay (comet assay) also showed the protective effects of EGCG. A concentration of 10 microM EGCG decreased the level of DNA single strand breaks and alkali-labile sites to 62% of the level observed in non-EGCG, irradiated cells (p < 0.001) with a 5-fold higher concentration producing little further effect. Correspondingly, EGCG ablated the mutagenic effects of UVA (500 kJ/m(2)) reducing an induced hypoxanthine-guanine phosphoribosyl transferase (HPRT) mutant frequency of (3.39 +/- 0.73) x 10(-6) to spontaneous levels (1.09 +/- 0.19) x 10(-6). Despite having an antiproliferative effect in the absence of UVA, EGCG also served to protect against the cytotoxic effects of UVA radiation. Our data demonstrate the ability of EGCG to modify endpoints directly relevant to the carcinogenic process in skin.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.10730DOI Listing

Publication Analysis

Top Keywords

uva radiation
12
effects uva
12
egcg
10
green tea
8
tea polyphenol
8
polyphenol epigallocatechin-3-gallate
8
microm egcg
8
absence uva
8
concentration microm
8
uva
6

Similar Publications

Article Synopsis
  • This study investigates the biological changes in rabbit corneas caused by two light-activated corneal stiffening methods: riboflavin with UVA and WST11 with NIR.
  • Differentially expressed proteins were identified following treatments, showing RF-D/UVA affected cell metabolism and keratocyte differentiation, while WST-D/NIR influenced extracellular matrix regulation.
  • The findings reveal a metabolic shift towards glycolysis in RF-D/UVA treated corneas compared to normal respiration in WST-D/NIR treated corneas, highlighting the distinct biological effects of each treatment.
View Article and Find Full Text PDF

Skin ageing, driven predominantly by oxidative stress from reactive oxygen species (ROS) induced by environmental factors like ultraviolet A (UVA) radiation, accounts for approximately 80% of extrinsic skin damage. L-glutathione (GSH), a potent antioxidant, holds promise in combating UVA-induced oxidative stress. However, its instability and limited penetration through the stratum corneum hinder its topical application.

View Article and Find Full Text PDF

The study aims to investigate an improved version of lipid nanocarriers (NLCs) (formulated with functional coconut butter and marula oil) by designing hyaluronic acid (HA) decorated NLC co-loaded with dual UVA (butyl methoxy dibenzoyl methane, BMDBM), UVB absorbers (ethyl-hexyl-salicylate, EHS) and a Raspberry rich polyphenols fraction (RPRF) for development of more natural NLC-based to-pical formulations. : Quality and quantitative attributes of classic- and HA-NLC have been assigned based on particle size, electrokinetic potential, encapsulation efficiency, spectroscopic characteristics, and high-resolution mass spectrometry. To establish the performance profile of antioxidant activity, release of active substances, sun blocking action, and photostability, in vitro studies were conducted.

View Article and Find Full Text PDF

This study investigated the effects of ultraviolet A (UVA) radiation on the blackness traits of Xichou Black-boned Chickens and their underlying molecular mechanisms through combined transcriptomic and metabolomic analyses. A total of 240 one-day-old Xichou Black-boned Chickens were randomly divided into four groups and exposed to different durations of UVA radiation at an intensity of 47 μW/cm. Skin blackness was measured at 1, 22, and 45 days of age, and blood and pectoral skin samples were collected at 45 days for analysis.

View Article and Find Full Text PDF

Energy delivered at different wavelengths causes different types of damage to DNA. PC-3, FaDu, 4T1 and B16-F10 cells were irradiated with different wavelengths of ultraviolet light (UVA/UVC) and ionizing radiation (X-ray). Furthermore, different photosensitizers (ortho-iodo-Hoechst33258/psoralen/trioxsalen) were tested for their amplifying effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!