Isolation and characterization of a potato cDNA corresponding to a 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene differentially activated by stress.

J Exp Bot

Instituto de Investigaciones Biológicas-Departamento de Biología, Universidad Nacional de Mar del Plata, Funes 3250, CC 1245, 7600 Mar del Plata, Argentina.

Published: December 2002

AI Article Synopsis

  • The ACC oxidase enzyme is crucial for ethylene production in plants, converting a precursor molecule into ethylene, which affects various plant processes.
  • A cDNA clone related to this enzyme, named ST-ACO3, was isolated from potato tubers infected by the fungus Fusarium eumartii, indicating a specific defense response in the plant.
  • The mRNA levels of ST-ACO3 increased when the tubers were infected or treated with certain hormones, suggesting that different signaling pathways are interconnected in the plant's defense mechanisms.

Article Abstract

1-Aminocyclopropane-1-carboxylate (ACC) oxidase enzyme catalyses the final step in ethylene biosynthesis, converting 1-aminocyclopropane-1-carboxylic acid to ethylene. A cDNA clone encoding an ACC oxidase, ST-ACO3, was isolated from potato (Solanum tuberosum L.) by differential screening of a Fusarium eumartii infected-tuber cDNA library. The deduced amino acid sequence exhibited similarity to other ACC oxidase proteins from several plants species. Northern blot analysis revealed that the ST-ACO3 mRNA level increased in potato tubers upon inoculation with F. eumartii, as well as after treatment with salicylic acid and indole-3-acetic acid, suggesting a cross-talk between different signalling pathways involved in the defence response of potato tubers against F. eumartii attack.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/DOI Listing

Publication Analysis

Top Keywords

acc oxidase
16
1-aminocyclopropane-1-carboxylate acc
8
potato tubers
8
isolation characterization
4
potato
4
characterization potato
4
potato cdna
4
cdna corresponding
4
corresponding 1-aminocyclopropane-1-carboxylate
4
acc
4

Similar Publications

The plant hormone ethylene elicits crucial regulatory effects on plant growth, development, and stress resistance. As the enzyme that catalyzes the final step of ethylene biosynthesis, 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO) plays a key role in precisely controlling ethylene production. However, the functional characterization of the gene family in rice remains largely unexplored.

View Article and Find Full Text PDF

Root-Knot Nematode Early Infection Suppresses Immune Response and Elicits the Antioxidant System in Tomato.

Int J Mol Sci

November 2024

Bari Unit, Institute for Sustainable Plant Protection, Department of Biology, Agricultural and Food Sciences, National Research Council of Italy, 70126 Bari, Italy.

The immune response in plants is regulated by several phytohormones and involves the overexpression of defense genes, including the pathogenesis-related () genes. The data reported in this paper indicate that nematodes can suppress the immune response by inhibiting the expression of defense genes. Transcripts from nine defense genes were detected by qRT-PCR in the roots of tomato plants at three and seven days post-inoculation (dpi) with living juveniles (J2s) of (root-knot nematodes, RKNs).

View Article and Find Full Text PDF

Ethylene modulates wheat response to phosphate deficiency.

J Exp Bot

November 2024

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China.

Ethylene involves in the response to P deficiency in some model plants, but its relevance to wheat remains limited. Following our recent study demonstrating the role of differentially expressed genes (DEGs) encoding ethylene response factors (ERFs) in response to P starvation in wheat, this study aims to investigate the remodelling of ethylene pathway and the physiological roles of ethylene in wheat under P deficiency using transcriptome analysis and the addition of exogenous ethylene analogue ethephon or ethylene inhibitors. ERFs with at least a two-fold change upon P deficiency were biasedly enriched on chromosome 4 B.

View Article and Find Full Text PDF

Ammonium (NH) enhances plant defense mechanisms but can be phytotoxic as the sole nitrogen source. To investigate the impact of a balanced NH and NO ratio on plant defense parameters without adverse effects, cucumber plants (Cucumis sativus L.) were grown under control (14 mM NO + 2 mM NH) and elevated level of NH (eNH, 8 mM NO+ 8 mM NH).

View Article and Find Full Text PDF

Insights into ACO genes across Rosaceae: evolution, expression, and regulatory networks in fruit development.

Genes Genomics

October 2024

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.

Background: ACO (1-aminocyclopropane-1-carboxylic acid) serves as a pivotal enzyme within the plant ethylene synthesis pathway, exerting influence over critical facets of plant biology such as flowering, fruit ripening, and seed development.

Objective: This study aims to identify ACO genes from representative Rosaceae genomes, reconstruct their phylogenetic relationships by integrating synteny information, and investigate their expression patterns and networks during fruit development.

Methods: we utilize a specialized Hidden Markov Model (HMM), crafted on the sequence attributes of ACO gene-encoded proteins, to systematically identify and analyze ACO gene family members across 12 representative species within the Rosaceae botanical family.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!