Tumor necrosis factor alpha (TNF-alpha) is a proinflammatory cytokine that induces apoptosis in a number of cell systems, including osteoblasts. Transforming growth factor beta1 (TGF-beta1) is an abundant growth factor that is known to stimulate bone formation. This study was designed to examine the role of TGF-beta1 on TNF-alpha-induced apoptosis in murine osteoblastic MC3T3-E1 cells. Total RNA was extracted from MC3T3-E1 cells treated with 20 ng/ml of TNF-alpha, 10 ng/ml of TGF-beta1, or combination, for 6 h. TNF-alpha exerted a variety of effects on the apoptotic gene expression in osteoblasts. Ribonuclease protection assays (RPA) revealed that TNF-alpha upregulated the mRNA levels of caspase-1, -7, -11, -12, and FAS. Western blot analysis showed enhanced processing of caspase-1, -7, -11, and -12, with the appearance of their activated enzymes 24 h after TNF-alpha treatment. In addition, caspase-3-like activity was significantly activated following TNF-alpha treatment. Levels of cleaved poly(ADP-ribose) polymerase and FAS protein were also elevated by TNF-alpha. Finally, Hoechst staining, terminal deoxynucleotidyl-transferase nick-end labeling (TUNEL) assay, and oligonucleosome ELISA all indicated that TNF-alpha induced apoptosis. In contrast, the addition of TGF-beta1 attenuated all of the aforementioned effects of TNF-alpha. Our results demonstrate that TGF-beta1 can decrease TNF-alpha-induced apoptosis in murine osteoblasts at least in part by attenuating TNF-alpha-induced caspase gene expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0167-4889(02)00257-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!