Background: Non-major histocompatibility complex (non-MHC) alloantibodies may play a pathogenic role in chronic rejection but remain poorly characterized.

Methods: The kinetics of alloantibody production and the mechanism by which non-MHC alloantibodies cause graft injury were investigated in a Lewis-to-Fischer 344 (LEW-to-F344) rat model of cardiac transplantation.

Results: Flow cytometry detected that all the F344 recipients of LEW allografts produced anti-donor immunoglobulin G (IgG) antibodies reactive with LEW lymphocytes and endothelial cells. A sub-group of recipients that rejected their grafts in 30 to 60 days exhibited markedly increased levels of anti-donor IgG antibodies (n = 6, mean fluorescence intensity [MFI]:23.85 +/- 2.7) than recipients with long-surviving allografts (n = 4, MFI:11.23 +/- 0.81; p = 0.00058). Passive transfer of anti-donor sera induced chronic rejection of LEW heart allografts in an immune non-responsiveness model of F344 rats induced by intrathymic inoculation of donor-specific lymphocytes. Immunoglobulin G antibodies purified from the anti-LEW sera exhibited complement-dependent cytotoxicity against LEW vascular endothelial cells in flow-cytometric cytotoxicity assay. The targeted endothelial cells displayed early (annexin V+) and late (TUNEL+) evidence for programmed cell death. Western blot analysis of poly (ADP-ribose) polymerase (PARP) demonstrated that the 25-kD PARP-cleavage fragment was present at the lysates of the vascular endothelial cells treated with anti-donor IgG antibodies, indicating apoptosis-associated caspase activity in these cells. In situ teminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining demonstrated that vascular endothelial cell apoptosis was consistently present in all LEW heart allografts with chronic rejection.

Conclusions: Non-MHC alloantibodies are pathogenic and capable of causing chronic graft injury through an antibody-induced cell apoptosis mechanism. The results emphasize the importance of non-MHC antibodies as a common predisposing factor in the development of chronic rejection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1053-2498(02)00457-6DOI Listing

Publication Analysis

Top Keywords

vascular endothelial
16
endothelial cells
16
cell apoptosis
12
non-mhc alloantibodies
12
chronic rejection
12
igg antibodies
12
endothelial cell
8
non-mhc antibodies
8
graft injury
8
anti-donor igg
8

Similar Publications

Endothelial cell (EC)-specific CTGF/CCN2 Expression Increases EC Reprogramming and Atherosclerosis.

Matrix Biol

January 2025

Department of Surgery, Emory University, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Research Services, Atlanta VA Medical Center, Decatur, GA, USA. Electronic address:

Arterial endothelial cells (ECs) reside in a complex biomechanical environment. ECs sense and respond to wall shear stress. Low and oscillatory wall shear stress is characteristic of disturbed flow and commonly found at arterial bifurcations and around atherosclerotic plaques.

View Article and Find Full Text PDF

Purpose: To evaluate the efficacy, durability and safety of intravitreal faricimab versus aflibercept over 48 weeks in patients with neovascular age-related macular degeneration (nAMD) from the LUCERNE China subpopulation.

Design: LUCERNE (NCT03823300) was a phase 3 global, double-masked, active comparator-controlled trial. The China subpopulation comprised patients from mainland China, Taiwan and Hong Kong.

View Article and Find Full Text PDF

Spatial profiling of endoplasmic reticulum stress markers in tumor associated cells predicts patient outcomes in pancreatic cancer.

Neoplasia

January 2025

Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Kensington, New South Wales 2031, Australia; UNSW Centre for Childhood Cancer Research, Faculty of Medicine &Health, University of New South Wales, Kensington, New South Wales 2031, Australia; Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2031, Australia. Electronic address:

Introduction: The impact of endoplasmic reticulum (ER) stress in tumor-associated cells, such as cancer associated fibroblasts (CAFs), immune cells and endothelial cells, on patient outcomes in clinical specimens have not been examined. For the first time, we characterized the expression and spatial locations of ER stress markers, BiP and CHOP, in tumor-associated cells and assessed their prognostic significance in a panel of pancreatic ductal adenocarcinoma (PDAC) patient samples.

Methods: Multiplex immunofluorescence was performed on tumor microarrays and images were analyzed using HALO AI software.

View Article and Find Full Text PDF

Antagonisation of Prokineticin Receptor-2 Attenuates Preeclampsia Symptoms.

J Cell Mol Med

January 2025

Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, INSERM, CEA, UMR 1292, Grenoble, France.

Preeclampsia (PE) is the most threatening pathology of human pregnancy. Placenta from PE patients releases harmful factors that contribute to the exacerbation of the disease. Among these factors is the prokineticin1 (PROK1) and its receptor, PROKR2 that we identified as a mediators of PE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!