Specific allergy vaccination (SAV) is associated with increased levels of allergen specific IgG in serum. It is not clear, however, to what extent qualitative changes in allergen binding to IgG may be induced as well. We therefore analyzed the binding of the major allergen in pollen of birch (Betula verrucosa) (Bet v 1), the major allergen in birch pollen, to serum IgG and IgE, separately and in competition. Sera from six birch pollen-allergic patients were obtained before and after 5 years of SAV, and binding was assessed with 125I-Bet v 1. Before SAV, IgG bound more than eight times the amount of Bet v 1 compared with IgE, and together they accounted for more than 85% of the serum binding capacity. While SAV induced minimal changes in IgE binding, the IgG binding capacities increased 6-32 times. In contrast, the binding avidities (K(d) 28-40pM) changed less than 20%, pre- and post-SAV IgG provided similar inhibition of Bet v 1 binding to IgE at equimolar levels, and cross inhibition studies between IgG and IgE showed low inter-individual differences. Following SAV, all sera reduced Bet v 1 binding to CD23(+) cells, correlating with reduced binding of Bet v 1 to IgE (P<0.001). These results show that high avidity IgG of low inter-individual difference in Bet v 1 binding quality is the dominant binding factor of Bet v 1 in sera of birch pollen-allergic patients, and that SAV-induced inhibition of binding of Bet v 1 to IgE can be explained mainly or solely by increased amounts of IgG.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0161-5890(02)00198-0DOI Listing

Publication Analysis

Top Keywords

binding
11
birch pollen
8
igg
8
reduced binding
8
binding ige
8
binding igg
8
major allergen
8
igg ige
8
bet binding
8
ige
7

Similar Publications

Background: The breakthrough discovery of novel biomarkers with prognostic and diagnostic value enables timely medical intervention for the survival of patients diagnosed with gastric cancer (GC). Typically, in studies focused on biomarker analysis, highly connected nodes (hubs) within the protein-protein interaction network (PPIN) are proposed as potential biomarkers. However, this study revealed an unexpected finding following the clustering of network nodes.

View Article and Find Full Text PDF

Integrative Transcriptome-Wide Association Study With Expression Quantitative Trait Loci Colocalization Identifies a Causal VAMP8 Variant for Nasopharyngeal Carcinoma Susceptibility.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, P. R. China.

Nasopharyngeal carcinoma (NPC) is an Asia-prevalent malignancy, yet its genetic underpinnings remain incompletely understood. Here, a transcriptome-wide association study (TWAS) is conducted on NPC, leveraging gene expression prediction models based on epithelial tissues and genome-wide association study (GWAS) summary statistics from 1577 NPC cases and 6359 controls of southern Chinese descent. The TWAS identifies VAMP8 on chromosome 2p11.

View Article and Find Full Text PDF

The clinical breakpoint for a drug-pathogen combination reflects the drug susceptibility of the pathogen wild-type population, the location of the infection, the integrity of the host immune response, and the drug-pathogen pharmacokinetic (PK)/pharmacodynamic (PD) relationship. That PK/PD relationship, along with the population variability in drug exposure, is used to determine the probability of target attainment (PTA) of the PK/PD index at a specified minimum inhibitory concentration (MIC) for a selected target value. The PTA is used to identify the pharmacodynamic cutoff value (CO), which is one of the three components used to establish the clinical breakpoint.

View Article and Find Full Text PDF

Background: This study aimed to elucidate the transport mechanism of lycopene-loaded nanomicelles to improve intestinal absorption of lycopene. The interactive mechanism between lycopene and nanomicelles was investigated through isothermal titration calorimetry (ITC). The cytotoxicity, cellular uptake, endocytosis, and intracellular transport pathways of lycopene-loaded nanomicelles were investigated using the Caco-2 cell model.

View Article and Find Full Text PDF

Angiostrongylus cantonensis (AC) is the leading cause of eosinophilic meningoencephalitis worldwide. The neuroimmune interactions between peripheral and central immune systems in angiostrongyliasis remain unclear. In this study, significant infiltration of eosinophils, myeloid cells, macrophages, neutrophils, and Ly6C monocytes is observed in the brains of AC-infected mice, with macrophages being the most abundant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!