Adenosine 5'-O-(1-boranotriphosphate) derivatives as novel P2Y(1) receptor agonists.

J Med Chem

Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel.

Published: November 2002

P2-receptors (P2-Rs) represent important targets for novel drug development. Most ATP analogues proposed as potential drug candidates have shortcomings such as limited receptor-selectivity and limited stability that justify the search for new P2-R agonists. Therefore, a novel series of nucleotides based on the adenosine 5'-O-(1-boranotriphosphate) (ATP-alpha-B) scaffold was developed and tested as P2Y(1)-R agonists. An efficient four-step one-pot synthesis of several ATP-alpha-B analogues from the corresponding nucleosides was developed, as well as a facile method for the separation of the diastereoisomers (A and B isomers) of the chiral products. The potency of the new analogues as P2Y(1)-R agonists was evaluated by the agonist-induced Ca2+ release of HEK 293 cells stably transfected with rat-brain P2Y(1)-R. ATP-alpha-B A isomer was equipotent with ATP (EC50 = 2 x 10(-7) M). However, 2-MeS- and 2-Cl- substitutions on ATP-alpha-B (A isomer) increased the potency of the agonist up to 100-fold, with EC50 values of 4.5 x 10(-9) and 3.6 x 10(-9) M, compared to that of the ATP-alpha-B (A isomer). Diastereoisomers A of all ATP-alpha-B analogues were more potent in inducing Ca2+ release than the corresponding B counterparts, with a 20-fold difference for 2-MeS-ATP-alpha-B analogues. The chemical stability of the new P2Y(1)-R agonists was evaluated by 31P NMR under physiological and gastric-juice pH values at 37 degrees C, with rates of hydrolysis of 2-MeS-ATP-alpha-B of 1.38 x 10(-7) s-1 (t1/2 of 1395 h) and 3.24 x 10(-5) s-1 (t1/2 = 5.9 h), respectively. The enzymatic stability of the new analogues toward spleen NTPDase was evaluated. Most of the new analogues were poor substrates for the NTPDase, with ATP-alpha-B (A isomer) hydrolysis being 5% of the hydrolysis rate of ATP. Diastereoisomers A and B exhibited different stability, with A isomers being significantly more stable, up to 9-fold. Furthermore, A isomers that are potent P2Y(1)-R agonists barely interact with NTPDase, thus exhibiting protein selectivity. Therefore, on the basis of our findings, the new, highly water-soluble, P2Y(1)-R agonists may be considered as potentially promising drug candidates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm020251dDOI Listing

Publication Analysis

Top Keywords

p2y1-r agonists
20
atp-alpha-b isomer
16
adenosine 5'-o-1-boranotriphosphate
8
drug candidates
8
atp-alpha-b analogues
8
agonists evaluated
8
ca2+ release
8
s-1 t1/2
8
agonists
7
analogues
7

Similar Publications

With a view to identify novel and biocompatible neuroprotectants, we designed nucleoside 5'-thiophosphate analogues, 6-11. We identified 2-SMe-ADP(α-S), 7A, as a most promising neuroprotectant. 7A reduced ROS production in PC12 cells under oxidizing conditions, IC50 of 0.

View Article and Find Full Text PDF

Nitrergic neuro-muscular transmission is up-regulated in patients with diverticulosis.

Neurogastroenterol Motil

October 2014

Department of Surgery, Gastrointestinal Physiology Laboratory, Hospital de Mataró, Mataró, Barcelona, Spain.

Background: Neuro-transmission impairment could be associated to motility changes observed in patients with diverticular disease. Therefore, the objective was to characterize the inhibitory neuro-muscular transmission and gene expression changes of the enteric inhibitory pathways in patients with diverticulosis (DS).

Methods: Circular muscle strips from sigmoid colon of patients with DS and controls were studied using the organ bath technique to evaluate spontaneous contractility and enteric motor neurons stimulated by electrical field and qRT-PCR to assess the expression of nNOS, iNOS, P2Y1 R and PGP9.

View Article and Find Full Text PDF

Currently, there is a need for novel, biocompatible, and effective neuroprotectants for the treatment of neurodegenerative diseases and brain injury associated with oxidative damage. Here, we developed nucleotide-based neuroprotectants acting dually as antioxidants and P2Y-R agonists. To improve the potency, selectivity, and metabolic stability of ATP/ADP, we substituted adenine C2-position by Cl and Pα/Pβ position by borano group, 6-9.

View Article and Find Full Text PDF

Coexposure of hypothalamo-neurohypophyseal system explants to ATP and phenylephrine [PE; an alpha1-adrenergic receptor (alpha1-AR) agonist] induces an extended elevation in vasopressin and oxytocin (VP/OT) release. New evidence is presented that this extended response is mediated by recruitment of desensitization-resistant ionotropic purinergic receptor subtypes (P2X-Rs): 1) Antagonists of the P2X2/3 and P2X7-Rs truncated the sustained VP/OT release induced by ATP+PE but did not alter the transient response to ATP alone. 2) The P2X2/3 and P2X7-R antagonists did not alter either ATP or ATP+PE-induced increases in [Ca(2+)](i).

View Article and Find Full Text PDF

The P2Y11-R (P2Y11 receptor) is a less explored drug target. We computed an hP2Y11-R (human P2Y11) homology model with two templates, bovine-rhodopsin (2.6 A resolution; 1 A=0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!