The predictions of two models of sound propagation in concentrated emulsions are compared with experimental measurements of ultrasonic velocity and attenuation in emulsions with volume fractions up to 0.7. The core-shell model includes irreversible heat transfer, viscoinertial forces, and multiple scattering [McClements et al., J. Acoust. Soc. Am. 105, 915-918 (1999)]. This model accounts for the effect of thermal interactions between neighboring particles by introducing an effective medium, and is valid for all volume fractions. The coupled phase model includes irreversible heat transfer and viscoinertial forces, and also is valid for all volume fractions, since it is derived from volume-averaged balance equations [J. M. Evans and K. Attenborough, J. Acoust. Soc. Am. 102, 278-282 (1997)]. This model has a significantly simpler formulation than the core-shell model and does not require the assumption of an effective medium. The coupled phase model is shown to be a good approximation to the core-shell model when the acoustic radius is small. Despite the fact that it does not include thermal interactions, the coupled phase model is shown to give at least as good agreement as the core-shell model with the experimental data, for all volume fractions, as long as the acoustic radius is less than 0.01.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.1510142DOI Listing

Publication Analysis

Top Keywords

core-shell model
20
coupled phase
16
phase model
16
volume fractions
16
model
11
sound propagation
8
propagation concentrated
8
concentrated emulsions
8
model includes
8
includes irreversible
8

Similar Publications

Early diagnosis of tumors allows effective treatment of primary cancers through localized therapeutic interventions. However, developing diagnostic tools for sensitive, simple, and early tumor (especially less than 2 mm in diameter) detection remains a challenge. Herein, we presented a biomarker-activatable nanoprobe that enabled a near-infrared (NIR) photothermally amplified signal for fluorescence imaging and urinalysis of tumor.

View Article and Find Full Text PDF

Colorectal cancer is a lethal malignancy that begins from acquired/inherent premalignant lesions. Thus, targeting these lesions at an early stage of the disease could impede the oncogenesis and maximize the efficacy. The present work underscores a combinatorial therapy of paclitaxel (PTX) and glycyrrhizin (GL) delivered via gelatin-derived core-shell nanoparticles [AC-PCL(GL + PTX)-GNPs] for effective management of precancerous lesions.

View Article and Find Full Text PDF

Controlling the microorganisms employed in vinification is a critical factor for successful wine production. Novel methods aimed at lowering sulfites used for wine stabilization are sought. UV-C irradiation has been proposed as an alternative for reducing the viable cell count of microorganisms in wine and grape juice.

View Article and Find Full Text PDF

We propose a temperature-dependent optimization procedure for the second-nearest neighbor (2NN) * tight-binding (TB) theory parameters to calculate the effects of strain, structure dimensions, and alloy composition on the band structure of heterostructure spherical core/shell quantum dots (QDs). We integrate the thermoelastic theory of solids with the 2NN * TB theory to calculate the strain, core and shell dimensions, and composition effects on the band structure of binary/ternary CdSe/Cd(Zn)S and ZnSe/Zn(Cd)S QDs at any temperature. We show that the 2NN * TB theory with optimized parameters greatly improves the prediction of the energy dispersion curve at and in the vicinity of L and X symmetry points.

View Article and Find Full Text PDF

The role of the hierarchical organization of the suprachiasmatic nucleus (SCN) in its functioning, jet lag, and the light treatment of jet lag remains poorly understood. Using the core-shell model, we mimic collective behavior of the core and shell populations of the SCN oscillators in transient states after rapid traveling east and west. The existence of a special region of slow dynamical states of the SCN oscillators can explain phenomena such as the east-west asymmetry of jet lag, instances when entrainment to an advance is via delay shifts, and the dynamics of jet lag recovery time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!