A cDNA encoding 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase (EC 4.1.2.15) from potato (Solanum tuberosum L.) presumably specifies a chloroplast transit sequence near its 5'-end. In order to show the function of this transit sequence, we constructed a plasmid that contains the entire coding region of the cDNA downstream from a T7 promoter. Using this plasmid as template, DAHP synthase mRNA was synthesized in vitro with T7 RNA polymerase. The resulting mRNA served as template for the in vitro synthesis of a 59-kDa polypeptide. This translation product was identified as the DAHP synthase precursor by immunoprecipitation with a monospecific polyclonal antibody raised against pure tuber DAHP synthase and by radiosequencing of the [(3)H]leucine-labeled translation product. Incubation of the 59-kDa polypeptide with isolated spinach (Spinacia oleracea L.) chloroplasts resulted in a 53-kDa polypeptide that was resistant to protease treatment. Fractionation of chloroplasts, reisolated after import, showed the mature DAHP synthase in the stroma fraction. Incubation of the 59-kDa polypeptide with a chloroplast precursor-processing enzyme cleaved the precursor between Ser49 and Ala50, generating a mature DAHP synthase of 489 residues. The uptake of the DAHP synthase precursor into isolated chloroplasts was inhibited by anti-DAHP synthase, and the precursor was not processed cotranslationally by canine microsomal membranes. We conclude that the transit sequence is able to direct DAHP synthase into chloroplasts.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-002-0891-5DOI Listing

Publication Analysis

Top Keywords

dahp synthase
32
synthase precursor
16
transit sequence
12
59-kda polypeptide
12
synthase
10
3-deoxy-d-arabino-heptulosonate 7-phosphate
8
precursor isolated
8
isolated chloroplasts
8
dahp
8
translation product
8

Similar Publications

Structural and biochemical analyses reveal quinic acid inhibits DAHP synthase a key player in shikimate pathway.

Arch Biochem Biophys

January 2025

Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India. Electronic address:

Article Synopsis
  • The shikimate pathway is crucial for making aromatic amino acids but isn't found in animals, making its enzymes targets for new antibiotics.
  • Researchers investigated quinic acid (QA) as a potential inhibitor of the DAHPS enzyme from the bacteria Providencia alcalifaciens, finding that it binds similarly to phenylalanine and has comparable binding affinities.
  • QA also showed inhibitory effects on various bacterial species, suggesting it could be developed into a new antimicrobial agent targeting the shikimate pathway for treating infections.
View Article and Find Full Text PDF

Plants direct substantial amounts of carbon toward the biosynthesis of aromatic amino acids (AAAs), particularly phenylalanine to produce lignin and other phenylpropanoids. Yet, we have a limited understanding of how plants regulate AAA metabolism, partially because of a scarcity of robust analytical methods. Here, we established a simplified workflow for simultaneous quantification of AAAs and their pathway intermediates from plant tissues, based on extraction at two alternative pH and analysis by Zwitterionic hydrophilic interaction liquid chromatography coupled to mass spectrometry.

View Article and Find Full Text PDF

Bacterial vaginosis (BV), primarily attributed to Gardnerella vaginalis, poses significant challenges due to antibiotic resistance and suboptimal treatment outcomes. This study presents an integrated approach to identify potential drug targets and screen compounds against this bacterium by leveraging a computational methodology. Subtractive proteomics of the reference strain ASM286196v1/UMB0386 (assembly accession: GCA_002861965.

View Article and Find Full Text PDF

A P1-like MYB transcription factor boosts biosynthesis and transport of C-glycosylated flavones in duckweed.

Int J Biol Macromol

October 2024

Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China. Electronic address:

C-glycosylated flavones (CGFs) are the main flavonoids in duckweed (Lemna turionifera), known for their diverse pharmacological activities and nutritional values. However, the molecular mechanisms underlying flavonoid metabolism in duckweed remain poorly understood. This study identified a P1-Like R2R3-MYB transcription factor, LtP1L, as a crucial regulator of CGF biosynthesis and transport in L.

View Article and Find Full Text PDF

Use of 3-Deoxy-D-arabino-heptulosonic acid 7-phosphate Synthase (DAHP Synthase) to Enhance the Heterologous Biosynthesis of Diosmetin and Chrysoeriol in an Engineered Strain of .

Int J Mol Sci

February 2024

Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain.

Flavonoids are a large family of polyphenolic compounds with important agro-industrial, nutraceutical, and pharmaceutical applications. Among the structural diversity found in the flavonoid family, methylated flavonoids show interesting characteristics such as greater stability and improved oral bioavailability. This work is focused on the reconstruction of the entire biosynthetic pathway of the methylated flavones diosmetin and chrysoeriol in .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!