Cold-shock and the Mammalian cell cycle.

Cell Cycle

Laboratory of Cell Regulation, Division of Molecular Medicine, Wadsworth Center; New York State Department of Health; Albany, New York 12201-0509 USA.

Published: December 2002

Progression through the cell cycle is temperature sensitive, but the relationship is not straightforward. In culture, many types of mammalian cells fail to undergo the G(2)/M transition after cooling from 37 degrees C to 16-20 degrees C (moderate hypothermia). However, progression through G(1) and S is not blocked at these temperatures, nor is progression through mitosis in cells cooled after they have become committed to the division process. Thus, at least one pathway is present during G(2)-but not during G(1), S or mitosis-that is selectively disrupted at or below a critical temperature. As a result, a prolonged (24-48 hr) exposure to moderate hypothermia can be used to enrich cultures for G(2) cells. A brief (1 hr) exposure to severe hypothermia (4-10 degrees C) is also reported to induce a high degree of mitotic synchrony (up to 80%) in some mammalian cultures. Although the mechanism behind this synchronization remains vague, it may involve a cell cycle checkpoint, triggered in response to the cold shock, that transiently inhibits the G(1)/S transition.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cell cycle
12
moderate hypothermia
8
cold-shock mammalian
4
mammalian cell
4
cycle progression
4
progression cell
4
cycle temperature
4
temperature sensitive
4
sensitive relationship
4
relationship straightforward
4

Similar Publications

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

Design, synthesis, and in vitro antitumor evaluation of novel benzimidazole acylhydrazone derivatives.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.

This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.

View Article and Find Full Text PDF

Menstrual effluent cell profiles have potential as noninvasive biomarkers of female reproductive and gynecological health and disease. We used DNA methylation-based cell type deconvolution (methylation cytometry) to identify cell type profiles in self-collected menstrual effluent. During the second day of their menstrual cycle, healthy participants collected menstrual effluent using a vaginal swab, menstrual cup, and pad.

View Article and Find Full Text PDF

An unprecedented global outbreak caused by the monkeypox virus (MPXV) prompted the World Health Organization to declare a public health emergency of international concern on July 23, 2022. Therapeutics and vaccines for MPXV are not widely available, necessitating further studies, particularly in drug repurposing area. To this end, the standardization of in vitro infection systems is essential.

View Article and Find Full Text PDF

Interplay of Light, Melatonin, and Circadian Genes in Skin Pigmentation Regulation.

Pigment Cell Melanoma Res

January 2025

Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.

Circadian regulation of skin pigmentation is essential for thermoregulation, ultraviolet (UV) protection, and synchronization of skin cell renewal. This regulation involves both cell-autonomous photic responses and non-cell-autonomous hormonal control, particularly through melatonin produced in a light-sensitive manner. Photosensitive opsins, cryptochromes, and melatonin regulate circadian rhythms in skin pigment cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!