Fibrillins are microfibril-forming extracellular matrix macromolecules that modulate skeletal development. In humans, mutations in fibrillins result in long bone overgrowth as well as other distinct phenotypes. Whether fibrillins form independent microfibrillar networks or can co-polymerize, forming a single microfibril, is not known. However, this knowledge is required to determine whether phenotypes arise because of loss of singular or composite functions of fibrillins. Immunolocalization experiments using tissues and de novo matrices elaborated by cultured cells demonstrated that both fibrillins can be present in the same individual microfibril in certain tissues and that both fibrillins can co-polymerize in fibroblast cultures. These studies suggest that the molecular information directing fibrillin fibril formation may be similar in both fibrillins. Furthermore, these studies provide a molecular basis for compensation of one fibrillin by the other during fetal life. In postnatal tissues, fibrillin-2 antibodies demonstrated exuberant staining in only one location: peripheral nerves. This surprising finding implicates distinct functions for fibrillin-2 in peripheral nerves, because a unique feature in humans and in mice mutant for fibrillin-2 is joint contractures that resolve over time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M209201200 | DOI Listing |
Zhonghua Yi Xue Yi Chuan Xue Za Zhi
January 2025
Department of Laboratory, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang 318050, China.
Objective: To determine the types of genetic variants in six Chinese pedigrees affected with Marfan syndrome (MFS) and analyze their clinical characteristics and molecular pathogenesis.
Methods: Six MFS pedigrees presented at the Taizhou Enze Medical Center (Group) between 2017 and 2022 were selected as the study subjects. Clinical data of pedigrees were retrospectively analyzed.
Cells
December 2024
Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
Marfan syndrome is an inherited connective tissue disorder that affects the cardiovascular, musculoskeletal, and ocular systems. It is caused by pathogenic variants in the fibrillin-1 gene (). Fibrillin is a primary component of microfibrils, which are found throughout the extracellular matrix (ECM) and provide elasticity and resilience to connective tissue.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Department of Ophthalmology, Southend University Hospital, Southend-on-Sea SS0 0RY, UK.
The zonular fibres are formed primarily of fibrillin-1, a large extracellular matrix (ECM) glycoprotein, and also contain other constituents such as LTBP-2, ADAMTSL6, MFAP-2 and EMILIN-1, amongst others. They are critical for sight, holding the crystalline lens in place and being necessary for accommodation. Zonulopathies refer to conditions in which there is a lack or disruption of zonular support to the lens and may clinically be manifested as ectopia lens (EL)-defined as subluxation of the lens outside of the pupillary plane or frank displacement (dislocation) into the vitreous or anterior segment.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
Congenital anterior segment anomalies are disorders that affect the development of the eye and cause severe visual impairment. The molecular basis of congenital anterior segment anomalies is not well known. In this study, genome sequencing was performed on 27 families from diverse ethnicities with congenital anterior segment anomalies and 11 variants were identified, most of which were novel and family specific.
View Article and Find Full Text PDFGenome Med
December 2024
European Reference Network for Rare Multisystemic Vascular Disease (VASCERN), HTAD and MSA Rare Disease, Working Group, Paris, France.
Background: In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) developed standardized variant curation guidelines for Mendelian disorders. Although these guidelines have been widely adopted, they are not gene- or disease-specific. To mitigate classification discrepancies, the Clinical Genome Resource FBN1 variant curation expert panel (VCEP) was established in 2018 to develop adaptations to the ACMG/AMP criteria for FBN1 in association with Marfan syndrome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!