1. Inhibition of rat platelet aggregation by the nitric oxide (NO) donor MAHMA NONOate (Z-1-N-methyl-N-[6-(N-methylammoniohexyl)amino]diazen-1-ium-1,2-diolate) was investigated. The aims were to compare its anti-aggregatory effect with vasorelaxation, to determine the effects of the soluble guanylate cyclase inhibitor, ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), and to investigate the possible role of activation of sarco-endoplasmic reticulum calcium-ATPase (SERCA), independent of soluble guanylate cyclase, using thapsigargin. 2 MAHMA NONOate concentration-dependently inhibited sub-maximal aggregation responses to collagen (2-10 micro g ml(-1)) and adenosine diphosphate (ADP; 2 micro M) in platelet rich plasma. It was (i). more effective at inhibiting aggregation induced by collagen than by ADP, and (ii). less potent at inhibiting platelet aggregation than relaxing rat pulmonary artery. 3. ODQ (10 micro M) caused only a small shift (approximately half a log unit) in the concentration-response curve to MAHMA NONOate irrespective of the aggregating agent. 4. The NO-independent activator of soluble guanylate cyclase, YC-1 (3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole; 1-100 micro M), did not inhibit aggregation. The cGMP analogue, 8-pCPT-cGMP (8-(4-chlorophenylthio)guanosine 3'5' cyclic monophosphate; 0.1-1 mM), caused minimal inhibition. 5. On collagen-aggregated platelets responses to MAHMA NONOate (ODQ 10 micro M present) were abolished by thapsigargin (200 nM). On ADP-aggregated platelets thapsigargin caused partial inhibition. 6. Results with S-nitrosoglutathione (GSNO) resembled those with MAHMA NONOate. Glyceryl trinitrate and sodium nitroprusside were poor inhibitors of aggregation. 7. Thus inhibition of rat platelet aggregation by MAHMA NONOate (like GSNO) is largely ODQ-resistant and, by implication, independent of soluble guanylate cyclase. A likely mechanism of inhibition is activation of SERCA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573589 | PMC |
http://dx.doi.org/10.1038/sj.bjp.0704971 | DOI Listing |
J Appl Physiol (1985)
September 2021
Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio.
Circulating factors access cell bodies of vagal afferents in nodose ganglia (NG) via the occipital artery (OA). Constrictor responses of OA segments closer in origin from the external carotid artery (ECA) differ from segments closer to NG. Our objective was to determine the role of endothelium in this differential vasoreactivity in rat OA segments.
View Article and Find Full Text PDFJ Sci Food Agric
May 2020
Department of Biology, University of Florence, Florence, Italy.
Background: Nitric oxide (NO) donors have been used to control biofilm formation. Nitric oxide can be delivered in situ using organic carriers and acts as a signaling molecule. Cells exposed to NO shift from biofilm to the planktonic state and are better exposed to the action of disinfectants.
View Article and Find Full Text PDFMethods Mol Biol
January 2019
Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, USA.
Membrane inlet mass spectrometry (MIMS) is a reproducible and reliable method for the measurement of nitric oxide in aqueous solution with a lower limit of detection of 10 nM and a linear response to 50 μM. MIMS utilizes a semipermeable membrane to partition analytes based on physicochemical properties from the bulk sample into the mass spectrometer. Silastic tubing allows the introduction of small gaseous molecules including nitric oxide (NO) into the high vacuum of a mass spectrometer.
View Article and Find Full Text PDFFront Physiol
November 2017
Institute of Molecular Biology and Biophysics, Russian Academy of Sciences, Novosibirsk, Russia.
Mitochondria are the major source of superoxide radicals and superoxide overproduction contributes to cardiovascular diseases and metabolic disorders. Endothelial dysfunction and diminished nitric oxide levels are early steps in the development of these pathological conditions. It is known that physiological production of nitric oxide reduces oxidative stress and inflammation, however, the precise mechanism of "antioxidant" effect of nitric oxide is not clear.
View Article and Find Full Text PDFFront Physiol
September 2016
Equipe d'Accueil 3072, Faculté de Médecine, Institut de Physiologie, Université de StrasbourgStrasbourg, France; Service de Physiologie et d'Explorations Fonctionnelles, Pôle de Pathologie Thoracique, Nouvel Hôpital Civil, CHRU de StrasbourgStrasbourg, France.
Objective: Left ventricle (LV) transmural gradient in mitochondrial respiration has been recently reported. However, to date, the physiological mechanisms involved in the lower endocardium mitochondrial respiration chain capacity still remain to be determined. Since, nitric oxide (NO) synthase expression in the heart has spatial heterogeneity and might impair mitochondrial function, we investigated a potential association between LV transmural NO and mitochondrial function gradient.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!