Alpha-crystallin, one of the major proteins in the vertebrate eye lens, acts as a molecular chaperone, like the small heat-shock proteins, by protecting other proteins from denaturing under stress or high temperature conditions. alpha-Crystallin aggregation is involved in lens opacification, and high [Ca(2+)] has been associated with cataract formation, suggesting a role for this cation in the pathological process. We have investigated the effect of Ca(2+) on the thermal stability of alpha-crystallin by UV and Fourier-transform infrared (FTIR) spectroscopies. In both cases, a Ca(2+)-induced decrease in the midpoint of the thermal transition is detected. The presence of high [Ca(2+)] results also in a marked decrease of its chaperone activity in an insulin-aggregation assay. Furthermore, high Ca(2+) concentration decreases Cys reactivity towards a sulfhydryl reagent. The results obtained from the spectroscopic analysis, and confirmed by circular dichroism (CD) measurements, indicate that Ca(2+) decreases both secondary and tertiary-quaternary structure stability of alpha-crystallin. This process is accompanied by partial unfolding of the protein and a clear decrease in its chaperone activity. It is concluded that Ca(2+) alters the structural stability of alpha-crystallin, resulting in impaired chaperone function and a lower protective ability towards other lens proteins. Thus, alpha-crystallin aggregation facilitated by Ca(2+) would play a role in the progressive loss of transparency of the eye lens in the cataractogenic process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1570-9639(02)00429-6 | DOI Listing |
Eur J Pharmacol
January 2025
Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
Colorectal cancer (CRC) is a significant global health challenge, marked by varying incidence and mortality rates across different regions. The pathogenesis of CRC involves multiple stages, including initiation, promotion, progression, and metastasis, influenced by genetic and epigenetic factors. The chaperone protein glucose-regulated protein 78 (GRP78), crucial in regulating the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, plays a pivotal role in CRC pathogenesis.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Centre for Bacterial Resistance Biology, Imperial College London, LondonSW7 2AZ, United Kingdom.
The RNA chaperone Hfq plays crucial roles in bacterial gene expression and is a major facilitator of small regulatory RNA (sRNA) action. The toroidal architecture of the Hfq hexamer presents three well-characterized surfaces that allow it to bind sRNAs to stabilize them and engage target transcripts. Hfq-interacting sRNAs are categorized into two classes based on the surfaces they use to bind Hfq.
View Article and Find Full Text PDFDrug Dev Res
February 2025
Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China.
We aimed to elucidate the prognostic and immunological roles of B cell-related genes in colorectal cancer (CRC). This study comprehensively integrated data from single-cell RNA-sequencing, TCGA, GEO, IMvigor210, GDSC, CancerSEA, HPA, and TISIDB databases to explore prognostic implications and immunological significance of B cell-related gene signature in CRC. We identified seven prognostically significant B cell-related genes for constructing a risk score.
View Article and Find Full Text PDFCellular systems that govern protein folding rely on a delicate balance of functional redundancy and diversification to maintain protein homeostasis (proteostasis). Here, we use to demonstrate how both overlapping and divergent activities of two homologous endoplasmic reticulum (ER)-resident HSP70 family chaperones, HSP-3 and HSP-4, orchestrate ER proteostasis and contribute to organismal physiology. We identify tissue-, age-, and stress-specific protein expression patterns and find both redundant and distinct functions for HSP-3 and HSP-4 in ER stress resistance, reproduction, and body size regulation.
View Article and Find Full Text PDFPI31 ( P roteasome Inhibitor of 31 ,000 Da) is a 20S proteasome-binding protein originally identified as an inhibitor of 20S proteasome activity. Although recent studies have provided a detailed structural basis for this activity, the physiologic significance of PI31-mediated proteasome inhibition remains uncertain and alternative cellular roles for PI31 have been described. Here we report a role for PI31 as a positive regulator for the assembly of the 20S immuno-proteasome (20Si), a compositionally and functionally distinct isoform of the proteasome that is poorly inhibited by PI31.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!