Several behavioral and electrophysiological studies have suggested that a sustained activation of protein kinase C would be required to underlie persistent changes associated with memory formation. Limited proteolysis of PKCs by calpains, calcium-activated proteases, cleaves the catalytic and the regulatory domains, generating a free catalytic fragment termed PKM, constitutively active. In order to investigate the potential physiological importance of this limited proteolysis as a mechanism of PKC activation, we have studied the effect of the calpastatin peptide, a specific calpain inhibitor, on the learning of a spatial discrimination task in a radial maze. Thus, using osmotic micro-pumps, the calpastatin peptide was infused bilaterally into the dorsal hippocampus during the six sessions of training and the probe test. The treatment was shown to facilitate the performance of the mice on the two last training sessions and on the probe test. This behavioral effect was shown to correspond to the reduced calpain activity observed in the hippocampus at the very end of the 7-day infusion of the calpastatin peptide, suggesting a relation between both events. In addition, PKC activity measured immediately after the probe test was notably decreased in the membrane fraction of the hippocampus. Although protein levels of PKCs and calpains quantified by western blot were not affected by calpastatin infusion, we found a noticeable correlation between mu-calpain and PKCgamma levels confirming the particular relationship between both proteins. These results suggest that calpains influence on PKCs activity may affect cellular mechanisms during memory processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0166-4328(02)00188-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!