Activation of excitatory amino acid receptors by endogenous excitotoxins results in degenerative changes characteristic of neurodegenerative brain diseases such as Huntington's disease. Excitatory amino acid receptors are present in the highest concentration in the striatum, the hippocampal region, and the temporal lobe. The most potent, naturally occurring excitatory amino acid receptor antagonist is kynurenic acid (KYNA) which acts preferentially on N-methyl-D-aspartate (NMDA) receptors. KYNA is produced from L-kynurenine, by the action of the enzymes kynurenine aminotransferases (KAT I and KAT II). Several inhibitors of mitochondrial energy metabolism result in an indirect excitotoxic neuronal degeneration. We examined whether systemic administration of the mitochondrial toxin 3-nitroproprionic acid (3-NP), an irreversible inhibitor of succinate dehydrogenase, which also acts by an indirect excitotoxic mechanism, would produce alterations in the immunohistochemical pattern of KAT I. Our present investigations demonstrate that after 15 days of administration of 3-NP, an inhibitor of mitochondrial Complex II, the most severe depletion of KAT I occurred in the striatum; less severe depletion occurred in other brain areas investigated, following a striatum > hippocampus > temporal cortex gradient. The alterations induced by 15 days of 3-NP treatment were less conspicuous in 6-week-old (young) animals than in 3-month-old adults. In these adult animals, 3-NP induced necrotic cores in the striatum, characterized by destruction of neuronal and glial elements, similar to that seen in the histologic and neurochemical features of Huntington's disease. It appears that immunohistochemical depletion of KAT after administration of 3-NP to adult animals may contribute to the pathological processes that characterize Huntington's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/exnr.2002.7973 | DOI Listing |
Sci Rep
January 2025
Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
The potential role of hydrogen sulfide (HS) in the modulation of neuropathic pain is increasingly recognized. This study investigated the therapeutic effect of intraperitoneal injection of the HS donor sodium hydrosulfide (NaHS) on neuropathic pain. Utilizing the spared nerve injury (SNI) model in mice, the research investigates the role of astrocytes and the excitatory neurotransmitter glutamate in chronic pain.
View Article and Find Full Text PDFNeuroscience
January 2025
Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil. Electronic address:
L-proline is an amino acid with a unique cyclic structure, involvement in various physiological processes, such as protein synthesis, collagen production, and neurotransmission. This review explores the complex roles of proline in the central nervous system (CNS), where it contributes to both excitatory and inhibitory neurotransmission. Additionally, L-proline has distinct metabolic functions attributed to its structural properties.
View Article and Find Full Text PDFCurr Neuropharmacol
January 2025
Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Str, 02-106 Warsaw, Poland.
The purpose of this review was to analyse the literature regarding the correlation between the level of tryptamine, aryl hydrocarbon receptor (AHR) signalling pathway activation, and monoamine oxidase (MAO)-A and MAO-B activity in health and conditions such as neurodegenerative, neurodevelopmental, and psychiatric disorders. Tryptamine is generated through the decarboxylation of tryptophan by aromatic amino acid decarboxylase (AADC) in the central nervous system (CNS), peripheral nervous system (PNS), endocrine system, and gut bacteria. Organ-specific metabolism of tryptamine, which is mediated by different MAO isoforms, causes this trace amine to have different pharmacokinetics between the brain and periphery.
View Article and Find Full Text PDFNat Commun
January 2025
Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Transmembrane AMPA receptor regulatory proteins (TARPs) are claudin-like proteins that tightly regulate AMPA receptors (AMPARs) and are fundamental for excitatory neurotransmission. With cryo-electron microscopy (cryo-EM) we reconstruct the 36 kDa TARP subunit γ2 to 2.3 Å, which points to structural diversity among TARPs.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!